Патенты автора Заец Виктор Федорович (RU)

Изобретение относится к технике определения параметров движения и к области оценки и измерения углового положения летательного аппарата (ЛА) и может быть использовано для восстановления углов атаки и скольжения летательного аппарата при отсутствии таковых. Согласно способу используют земную скорость, измеряемую посредством спутниковой навигационной системы, а также значения углов пространственной ориентации летательного аппарата от навигационной системы. Определяют значение воздушной скорости и идентифицируют три проекции скорости ветра. Находят оценки углов атаки и скольжения, полученные через аэродинамические коэффициенты подъемной и боковой сил, тягу двигателей, а также через перегрузки, измеряемые бортовыми датчиками в связанной системе координат. Таким образом, получают два вида оценок углов атаки и скольжения - на основе значений аэродинамических коэффициентов, зависящие от ветра, и на основе измерений навигационной системы, в которых движение воздуха не учитывается. Определяют модель объекта, модель измерений и вектор оцениваемых параметров. Путем параметрической идентификации восстанавливают углы атаки и скольжения. Технический результат заключается в возможности восстановления величин углов атаки и скольжения при отсутствии предназначенных для этого измерительных приборов. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. Способ коррекции гировертикали по углу атаки заключается в том, что на основании сигналов, поступающих с датчиков угловых скоростей и соответствующих угловым скоростям объекта, а также сигналов текущих значений крена и тангажа осуществляют комплексирование и преобразование этих сигналов, дополнительно используют сигналы, равные величине расчетного угла атаки, которую определяют косвенным методом вычисления по уравнениям динамики полета, включающим нормальную перегрузку, а также параметры полета, поступающие от системы воздушных сигналов. При этом параметры полета включают в себя параметры скоростного напора, горизонтальную и вертикальную воздушные скорости, площадь крыла и вес ЛА, коэффициент подъемной силы. А углы крена и тангажа определяют через расчетный угол атаки, используя угловые скорости с учетом назначаемого порога интенсивности вращения, в соответствии с которым постоянная времени интеграторов переключается с малого на большое значение при превышении порога интенсивности вращения. Технический результат – обеспечение ЛА углами крена и тангажа в резервном режиме с требуемой точностью и уменьшение требований к мощности резервного бортового вычислителя. 9 ил.

Изобретение относится к измерительной технике, а конкретно к системам инерциальной навигации. Сущность предлагаемого способа заключается в совместном оценивании крена, тангажа и рыскания летательного аппарата по измерениям трехкомпонентных датчиков угловых скоростей и линейных ускорений, одного приемника спутниковой навигационной системы по алгоритму нелинейного субоптимального фильтра первого порядка приближения калмановского типа. При этом субоптимальный фильтр имеет третий порядок вектора состояния. Техническим результатом заявленного изобретения является повышение точности бесплатформенной инерциальной навигационной системы и уменьшение требуемых вычислительных затрат. 11 ил.

Изобретение относится к области приборостроения и может быть использовано при выставке бесплатформенных инерциальных навигационных систем (БИНС) управляемого аппарата (УА). Способ идентификации углов рассогласования БИНС УА и ИНС самолета-носителя (СН), использующий угловые скорости выходных сигналов БИНС УА и ИНС СН, измерение угловых скоростей производят при выполнении специального маневра СН. При этом дополнительно по команде «начало маневра» начинают накапливать измерения датчиков ИНС и БИНС, вводят матрицу функций чувствительности, составляют модель связи угловой скорости ИНС ЛА и угловой скорости БИНС подвески, вводят вектор углов подвески, по окончании маневра вычислитель БИНС выполняет расчет углов подвески. Для расчета используют итерационный метод функций чувствительности изображений процессов изменения угловых скоростей в частотной области к вариациям искомых углов подвески, при этом используют преобразование Фурье для перевода процессов в частотную область, расчет изображения для одной частоты выполняют с учетом приведения к действительному виду по методу Хартли. Вектор углов подвески оценивают один раз по окончании маневра с использованием итерационной процедуры частотного метода наименьших квадратов, контролируют правильность оценок углов подвески как в частотной области, так и в области времени представления переходных процессов, о результатах контроля выдается сообщение. Технический результат – обеспечение возможности одноразового определения с требуемой точностью углов рассогласования осей связанных систем координат УА и СН в полете. 7 ил.

Изобретение относится к области контроля и настройки комплексных систем управления (КСУ) полетом с использованием автоматизированных рабочих мест при испытаниях КСУ и в процессе их эксплуатации. Предложенный способ фактического контроля позволит минимизировать ошибки оператора и снизить влияние «человеческого» фактора при испытаниях и эксплуатации КСУ летательных аппаратов. В изобретении предлагается обеспечить симбиоз действий оператора и встроенного контроля действий оператора (ВКО), реализуемого в АРМ - способ «фактического» контроля. Для этих целей предлагается реализовать процесс настройки и регулировки таким образом, чтобы обеспечивался способ создания единственной возможной циклограммы контроля, позволяющей завершить настроечные работы. При этом любые несоответствия (пошаговые или параметрические) не позволяли бы успешно завершить работу, а реализованная возможность документирования в устройстве автоматизированной проверки, где будет реализован ВКО, обеспечивала контролирующих лиц информацией о каждом выполненном шаге. Техническим результатом использования способа фактического контроля параметров КСУ является существенное снижение влияния «человеческого фактора» в процессе регулировочных работ, повышение качества и точности проводимых работ, повышение безопасности выполнения полетов, простота и реализуемость способа в АРМ. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. Адаптивный способ коррекции углов ориентации бесплатформенной инерциальной навигационной системы (БИНС), при котором на основании сигналов, поступающих с акселерометров, входящих в состав БИНС, определяют модуль абсолютного ускорения, действующего на объект, на котором установлена БИНС. Совместно обрабатывают сигналы, соответствующие угловой скорости и земной скорости объекта, с сигналами, соответствующими линейным ускорениям и преобразованными с учетом параметров полета объекта, и осуществляют адаптивную оценку крена и тангажа посредством фильтра Калмана, в котором коэффициент усиления изменяется в зависимости от текущих значений модулей перегрузки и линейной скорости, а также угловых скоростей. При этом дополнительно осуществляют адаптивную оценку угла курса объекта, используют сигналы, соответствующие линейным скоростям объекта, полученные от приемника спутниковой навигационной системы (СНС) с одной антенной и спроецированные в связанную систему координат, и сигналы, соответствующие линейным ускорениям объекта, полученные путем сглаживания с последующим дифференцированием скоростей от приемника СНС с одной антенной, и проецированием их в связанную систему координат. Кроме того, учитывают вектор ошибок измерений ускорений, вводят дополнительно два условия для проведения точной коррекции, которые определяют выдерживание постоянной ориентации, и отсутствие ускорений, создаваемых объектом. Техническим результатом является повышение точности и обеспечение непрерывной коррекции углов тангажа, крена и курса в условиях маневрирования в полете. 3 ил.

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. Корректор углов ориентации для бесплатформенной инерциальной навигационной системы (БИНС) от спутниковой навигационной системы (СНС) состоит из блока датчиков угловых скоростей, блока формирования кватернионов, блока определения углов ориентации, блока датчиков линейных ускорений, блока формирования матрицы шумов системы, фильтра Калмана, одноантенного приемника СНС, блока формирования матрицы шумов измерений, дифференцирующего устройства, блока формирования невязки и блока преобразования координат. Система реализуется по принципу фильтра Калмана, в котором коэффициент усиления изменяется с учетом текущих значений модулей перегрузки и угловой скорости. При этом происходит подавление влияния кажущегося ускорения на процесс коррекции. Измерения линейных ускорений осуществляются через функции, которые определяют связь измерений перегрузок с параметрами полета ЛА и содержат измерения акселерометров. Параметры линейных скоростей и ускорений получают из проекций путевых скоростей одноантенного приемника спутниковой навигационной системы путем преобразований координат и дифференцирований. В процессе работы БИНС интенсивность коррекции адаптируется к отклонениям кажущейся вертикали от гравитационной в условиях интенсивного маневрирования. Технический результат – повышение точности коррекции БИНС по углам крена, тангажа и обеспечение измерения курса с требуемой точностью во всем диапазоне полета путем создания способа непрерывной коррекции от СНС. 4 ил.

Изобретение относится к области ракетной техники, а именно к приводам управления аэродинамическими поверхностями ракет или снарядов. Блок рулевых приводов ракеты или снаряда состоит из общего корпуса, четырех исполнительных механизмов, каждый из которых включает электродвигатель, набор механических передач, датчик обратной связи и опорное устройство вала аэродинамической поверхности, жестко соединенного с валом выходного звена выходной механической передачи. Общий корпус выполнен из двух частей: наружной и внутренней, соединенных перегородками. Наружная часть является составной частью корпуса ракеты или снаряда, а внутренняя часть имеет форму параллелепипеда с центральным продольным отверстием. В исполнительных механизмах использованы высокоскоростные электродвигатели, энергетические параметры которых достигаются за счет длины, при которой наружные диаметры четырех двигателей вписываются во внутренний диаметр наружного общего корпуса. В состав механических передач входят передачи, соединенные в следующей последовательности от электродвигателя: планетарная, коническая, цилиндрическая и волновая с телами качения, выполненная по схеме с выходным жестким колесом. Передаточные числа механических передач распределены так, что передаточное число волновой передачи реализуется с наружным диаметром жесткого колеса, которое вписывается в сектор наружной части корпуса с углом 90°. Передаточное число планетарной передачи реализуется с наружным диаметром, не превышающим наружный диаметр электродвигателя, а остальные механические передачи дополняют общее передаточное число до требуемого значения. Опорное устройство каждой аэродинамической поверхности образовано телами качения волновой передачи, расположенными в сепараторе внутри жесткого колеса, и двумя рядами тел качения, контактирующими с канавками жесткого колеса, расположенными на его наружной поверхности по разные стороны зубчатого венца кинематической пары связи с датчиком обратной связи, и кольцевыми дорожками, расположенными в перегородках корпуса, имеющих форму стаканов. Изобретение позволяет обеспечить управление ракетой или снарядом малого диаметра при высоких аэродинамических нагрузках. 2 ил.

Изобретение относится к системам управления летательных аппаратов. Резервированный электромеханический силовой минипривод состоит из нескольких исполнительных механизмов, каждый из которых содержит бескорпусной электрический двигатель, двухступенчатую волновую передачу с телами качения и электромеханическую муфту. Каждый исполнительный механизм дополнен вторым электродвигателем, расположенным тандемно с первым на общем валу (5). Электромеханическая муфта выполнена из двух полумуфт. Одна полумуфта является входным валом (18). Вторая выполнена составной, состоящей из промежуточного звена и выходного вала (19). Внутренняя цилиндрическая поверхность промежуточного звена и наружная поверхность выходного вала (19) снабжены шлицами с шариками (26), размещенными в сепараторе (27), так, что промежуточное звено имеет осевое перемещение относительно выходного вала (19). На выходном валу, диаметрально, на непересекающихся осях к продольной оси на подшипниках размещены два эксцентрика (20) с цилиндрическими выступами на торцах, при этом на цилиндрических выступах на подшипниках крепятся рычаги якорей электромагнитного включения (21) и отключения (23). Достигается повышение надежности привода и увеличение ресурса. 3 ил.

Изобретение относится к резервированным электромеханическим приводам, исполнительные механизмы которых защищены от заклинивания и предназначены для приведения в движение аэродинамических поверхностей или шасси летательного аппарата. Резервированный электромеханический привод содержит основной и резервный каналы управления, каждый из которых содержит бескорпусной бесколлекторный электродвигатель с электромагнитным тормозом и механическую передачу, входной вал которой соединен с валом ротора электродвигателя, а выходной - с одним из входных звеньев дифференциальной волновой передачи, включающей волнообразователь, гибкое и жесткое колеса. При этом основной и резервный каналы выполнены одинаковыми, с резервированными электродвигателями и электромагнитными тормозами. В качестве дифференциальной волновой передачи и механических передач использованы волновые передачи с телами качения, у которых гибкими колесами являются сепараторы с телами качения. Волнообразователи выполнены из подшипников, насаженных на оси с эксцентриками. У волновых передач выходными звеньями являются жесткие колеса, на которых установлены эксцентрики с подшипниками. При этом сепаратор дифференциальной волновой передачи установлен с возможностью вращения относительно корпуса. Повышается ресурс работы привода. 1 ил.

Данное изобретение относится к автоматической либо автоматизированной калибровке систем и датчиковпутем «обучения» интеллектуального датчика в процессе калибровки. Техническим результатом является упрощение процедур разработки датчиков на основе применения предложенной в изобретении новой технологии их индивидуальной калибровки и обучения, в результате которой может быть получен «интеллектуальный» датчик, обеспечивающий как восстановление воздействующей на него физической величины с заданной точностью во всем диапазоне условий рабочего функционирования, так и уникальное для датчика конкретного типа избирательное повышение чувствительности в интересующем диапазоне изменения измеряемой физической величины. Калибровка интеллектуальных датчиков осуществляется путем подачи на их вход множества известных сигналов, наблюдения множества выходных сигналов и использования искусственной нейронной сети для аппроксимации (интерполяции) математической модели калибруемого датчика, которая должна удовлетворять определенным условиям в соответствии с коммутативной диаграммой, соответствующей принципу изоморфизма. Путем обучения искусственной нейронной сети формируют в неявном виде обратную (либо прямую) модель калибруемого интеллектуального датчика, позволяющую с заданной точностью восстанавливать воздействующее на вход системы (либо непосредственно наблюдаемое на ее выходе) известное множество сигналов. 3 ил.

Изобретение относится к области навигации, навигационных приборов, испытаниям и калибровке и может быть использовано для калибровки датчиков бесплатформенных инерциальных систем ориентации и навигации летательных аппаратов, морских, наземных и других подвижных объектов. Способ включает начальную выставку платформы, статический эксперимент, при неподвижном положении платформы, последовательное вращение с помощью стендового оборудования как минимум по двум непараллельным осям в базисе калибруемого ИБД, запись показания ИБД по каналу датчиков линейного ускорения (ДЛУ) и показания датчиков угловой скорости (ДУС). Идентифицируя предложенную нелинейную математическую модель ДУС, определяют нулевые сигналы ДУС, матрицу, описывающую масштабные коэффициенты, перекрестные связи, нелинейные коэффициенты, для чего разрабатывают программу автоматизации процесса калибровки. Программа включает выполнение последовательности вращений и углов наклона платформы в соответствии с 6-ю указанными экспериментами при длительности интервала времени вращений и наклонов платформы порядка 3-4 минут. Обработка полученных данных включает выбор интервала времени длительностью порядка 2-3 минут с установившейся угловой скоростью и углами наклона, вычисление средних значений кодов АЦП ДУС, дифференцирование показаний угломеров и вычисление средних значений угловых скоростей платформы стола, вычисление средних значений показаний датчиков температуры. Далее, используя определенные алгоритмы, определяют калибровочные коэффициенты. По предлагаемому способу оценивание масштабов и углов неортогональности выполняется совместно со смещениями нулей. За счет этого обеспечивается инвариантность оценок масштабных коэффициентов и углов неортогональности по отношению к смещениям нулей ДУС и, соответственно, повышение точности, что важно для микромеханических ДУС с высоким уровнем нестабильности смещений нулей. Технический результат – повышение точности калибровки масштабных коэффициентов и углов неортогональности микромеханических ДУС. 5 табл., 1 ил.

Изобретение относится к измерительной технике, автоматике и может быть использовано при создании высокоточных аналого-цифровых преобразователей, датчиков перемещений и систем контроля параметров изделий электронной техники. Техническим результатом является уменьшение погрешности измерения углового положения. Устройство содержит аналоговый датчик углового положения, цифровой датчик углового положения, расположенный на одном валу с аналоговым датчиком углового положения, аналого-цифровой преобразователь и вычислитель. 4 ил., 2 табл.

Изобретение относится к области навигации, навигационных приборов, испытаниям и калибровке, и может быть использовано для калибровки датчиков бесплатформенных инерциальных систем ориентации и навигации летательных аппаратов, морских, наземных и других подвижных объектов. Способ включает начальную выставку платформы, статический эксперимент при неподвижном положении платформы, вращение с помощью стендового оборудования последовательно как минимум по двум непараллельным осям в базисе калибруемого ИБД, во время вращения записывают показания ИБД по каналу датчиков линейного ускорения (ДЛУ), показания датчиков угловой скорости (ДУС), идентифицируя математическую модель ДУС определяют нулевые сигналы ДУС, матрицу, описывающую масштабные коэффициенты, перекрестные связи, осуществляют разработку программы автоматизации процесса калибровки, которая включает выполнение последовательности вращений и наклонов платформы на углы в соответствии с 6-ю указанными ниже экспериментами при длительности интервала времени при каждом вращении и наклоне порядка 3-4 минут, обработку полученных данных, включающих выбор интервала времени длительностью порядка 2-3 минут с установившейся угловой скоростью и углами наклона, вычисление средних значений кодов АЦП ДУС, дифференцирование показаний угломеров и вычисление средних значений угловых скоростей платформы стола, вычисление средних значений показаний датчиков температуры и, используя определенные алгоритмы, вычисление калибровочных коэффициентов. Технический результат – повышение точности калибровки масштабных коэффициентов и углов неортогональности за счет инвариантности к текущим смещениям нулевых сигналов. 3 табл.

Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении автоматизированной структурно-параметрической, либо непараметрической идентификации модели объекта по известным на основе измерений значениям входных и выходных сигналов. Технический результат достигается за счет способа идентификации нелинейных систем путем подачи на их вход множества известных сигналов, наблюдения множества выходных сигналов и использования искусственной нейронной сети для аппроксимации (интерполяции) идентифицируемой модели, которая должна удовлетворять определенным условиям в соответствии с коммутативной диаграммой, соответствующей принципу изоморфизма. 2 ил.

Изобретение относится к измерительной технике, автоматике, и может быть использовано при создании высокоточных аналого-цифровых преобразователей и систем контроля параметров изделий электронной техники. Техническим результатом является уменьшение погрешности измерения углового положения. Способ содержит измерение угла поворота аналоговым и цифровым датчиками различного принципа измерения с совмещенными диапазонами измерений, расположенными на одном валу, обработку полученных сигналов, внесение коррекции расчетными величинами погрешностей, формирование выходного значения угла. 4 ил., 2 табл.

Изобретение относится к области навигационного приборостроения и может найти применение в навигационных системах морских, воздушных и наземных объектов. Технический результат - повышение точности бесплатформенной инерциальной навигационной системы (БИНС) на основе непрерывной коррекции курсовертикали, в том числе и в условиях маневра. Для этого малогабаритная адаптивная курсовертикаль содержит трехкомпонентный блок датчиков угловых скоростей, трехкомпонентный блок датчиков линейных ускорений, вычислительный блок, трехкомпонентный магнитометрический датчик (ТМД), блок определения и списания магнитной девиации, блока датчиков воздушных давлений, блок определения воздушной скорости, дифференцирующий и фильтрующий блок, блок оптимизации коэффициентов фильтра. При этом малогабаритная адаптивная курсовертикаль может быть использована как на высокоманевренных, так и на маломаневренных летательных аппаратах (ЛА). Повышение точности определения истинного курса достигнуто путем списания девиации в полете и постоянной адаптивной коррекцией углов крена и тангажа по сигналам акселерометров, а также оптимизацией коэффициентов фильтрации в зависимости от турбулентности и осуществлении настройки на множестве обучающих последовательностей. Списание девиации ТМД может быть осуществлено периодически, в случае отсутствия замены бортового и подвесного оборудования ЛА. Курсовертикаль позволяет использовать датчики угловых скоростей и линейных ускорений средней и низкой точности, в том числе микромеханического типа. 1 табл., 1 ил.

Изобретение относится к контрольно-измерительной технике, в частности к автоматическим и автоматизированным системам разработки интеллектуальных датчиков путем «обучения» в процессе калибровки, и может быть использовано в приборостроении при разработке, изготовлении и диагностике интеллектуальных датчиков и измерительных систем различного типа. Система для разработки интеллектуального датчика содержит: генератор эталонного сигнала, первичный измерительный преобразователь, процессор, задатчик структуры искусственной нейронной сети, автоматизированное рабочее место обучения (формирователь f-1), первое и второе вычитающие устройства, соединенные между собой в соответствии с блок-схемой на фиг. 2. Система разработки интеллектуального датчика опирается на общий эффект от применения двух технологий - технологии идентификации систем на основе общего принципа изоморфизма и технологии разработки и обучения искусственных нейронных сетей. Техническим результатом является упрощение процедур разработки датчиков на основе применения предложенной в изобретении новой технологии их индивидуальной калибровки и обучения, в результате которой может быть получен «интеллектуальный» датчик, обеспечивающий как восстановление воздействующей на него физической величины с заданной точностью во всем диапазоне условий рабочего функционирования, так и уникальное для датчика конкретного типа избирательное повышение чувствительности в интересующем диапазоне изменения измеряемой физической величины. 2 ил.

Изобретение относится к авиации, в частности к области устройств помощи в навигации для уточнения траектории летательного, в частности в пилотажно-навигационном оборудовании летательных аппаратов (ЛА). Устройство содержит датчик угловой скорости (ДУС), датчик линейных ускорений (ДЛУ), бесплатформенную инерциальную навигационную систему (БИНС), первое пороговое устройство, блок определения мгновенного значения крена, блок определения скользящей средней оценки крена и его среднеквадратического отклонения, второе пороговое устройство, первое логическое устройство, второе логическое устройство, соединенные определенным образом. Выходным сигналом устройства являются скорректированный угол крена БИНС. Данное устройство позволяет уточнить текущую траекторию полета, осуществить уточнение текущего значения угла крена, для чего выполняется проверка выхода угловой скорости относительно продольной оси (ωx) за ограничение пределов измерений датчика ДУС, автономное уточнение угла крена после устранения вращения ЛА, нахождение «площадки» для определения крена и вычисление крена методом скользящей средней. Технический результат – повышение точности формирования текущей траектории автономно управляемого ЛА путем определения угла крена управляемого ЛА после отделения его от носителя, используя сигналы его бортовых инерциальных датчиков, в случае возникновения вращения ЛА. 2 ил.

Изобретение относится к области навигационного приборостроения и может найти применение в системах контроля и управления летательными аппаратами (ЛА). Технический результат - расширение функциональных возможностей и повышение точности определения навигационных параметров. Для этого осуществляют определение и списание девиации трехкомпонентного магнитометрического датчика (ТМД), включая круговую девиацию, после набора высоты путем совершения полета по кругу, используя адаптированную к внешним возмущениям бесплатформенную инерциальную курсовертикаль (БИКВ) и ТМД со списанной в полете девиацией на основе оптимизации коэффициентов адаптивной коррекцией углов, используя при этом введенные датчики динамического и статического давлений для определения воздушной скорости, с последующим ее дифференцированием и фильтрацией для получения сигнала, пропорционального линейному продольному ускорению, и используют дополнительную оптимизацию коэффициентов адаптивной коррекции, выполняя настройку на множестве обучающих последовательностей. При этом повышение точности определения истинного курса достигается путем списания девиации в полете и постоянной адаптивной коррекцией углов крена и тангажа по сигналам акселерометров, а также на основе оптимизации коэффициентов фильтрации в зависимости от турбулентности и осуществления настройки на множестве обучающих последовательностей. Причем списание девиации может быть осуществлено периодически, в случае отсутствия замены бортового и подвесного оборудования ЛА. В результате представляется возможность использовать датчики угловых скоростей и линейных ускорений средней и низкой точности, в том числе микромеханического типа. 1 табл.

Изобретение относится к областям информатики и вычислительной техники и может быть использовано для генерации псевдослучайной двоичной последовательности. Техническим результатом является повышение эффективности составления двоичного кода псевдослучайной кодовой шкалы. Генерируют двоичные коды при формировании Т-последовательности. Используют ориентированное дерево формирования Т-последовательности. Выполняют анализ данных при построении и обходе ациклического направленного графа и динамический анализ графа путем одновременного построения и обхода графа по предварительно сформулированным правилам в отношении структуры и направления обхода с учетом заданных начальных условий. Структуру, порядок построения и приоритет направления обхода ориентированного дерева определяют алфавитом, т.е. порядком элементов алфавита a1, а2, …, ak. Символ алфавита а1 является корнем. Все узлы имеют одинаковый состав потомков а1, а2, …, ak. В процессе обхода контролируют список сформированных слов на уникальность. При обходе вводят запреты 1 рода - запрет слова с возвратом к предку из-за неуникальности слова; запреты 2 рода - запрет слова с возвратом к предку из-за отсутствия возможных приоритетных вариантов движения вниз. 3 ил., 2 табл.

Изобретение относится к способу построения маршрута маловысотного полета на виртуальном полигоне. Для построения маршрута производят моделирование виртуальной карты рельефа местности, используют динамическую модель испытуемого ЛА, производят полет по заданному маршруту, производят разложение заданного маршрута на элементарные звенья определенным образом, формируют горный рельеф с заданными параметрами, привязывают разработанный маршрут к географическим координатам, определенными навигационной системой на борту ЛА, определяют область возможного выполнения маловысотного полета для каждого элементарного звена и для общей области полета над заданным рельефом местности. Обеспечивается уменьшение затрат и времени для создания виртуального рельефа местности для моделирования полета. 17 ил.

Изобретение относится к испытательной технике и может быть использовано для оценки качественных характеристик контура управления маловысотным полетом. Технический результат – расширение функциональных возможностей. Для этого способ включает моделирование виртуального рельефа местности, использование динамической модели испытуемого летательного аппарата (ЛА), разложение заданного маршрута горного рельефа на N (например, на 16) элементарных звеньев, под которыми понимаются элементы подстилающего рельефа, расположенные на траектории полета, с характеристиками, заданными в тактико-техническом задании. Формируют высотно-скоростную область конкретного ЛА, обеспечивающую безусловный облет препятствий. Совокупность звеньев, расположенных в любом порядке, формирует виртуальный горный рельеф, который ЛА способен облететь на заданной высоте эшелона маловысотного полета (МВП). Выполняют МВП над каждым звеном последовательно во всем разрешенном высотно-скоростном диапазоне МВП. Полет на оценку маловысотного контура (МВК) выполняют в условиях равнинной местности при отсутствии каких-либо реальных опасных препятствий. Маршрут разрабатывают с привязкой к географическим координатам (ϕ, X), определенным навигационной системой на борту ЛА. К географическим координатам (ϕ, X), определенным навигационной системой на борту ЛА, добавляют смещения Δϕ, Δλ таким образом, чтобы положение ЛА относительно цифровой карты местности (ЦКМ) соответствовало положению ЛА на испытательной трассе. При этом техническим результатом использования «виртуальных» полигонов являются: использование штатных бортовых информационных систем вместо моделей; воздействие на ЛА реальных возмущений (турбулентность атмосферы, близость земной поверхности и т.д.), кроме того, возмущение достаточно просто имитировать; отсутствие необходимости в разработке модели рельефа местности и нештатного цифрового вычислителя на борту ЛА; возможность проведения обучения и тренажа летного состава в реальных полетах; оценка летным составом эргономики МВК; возможность оценки срабатывания средств безопасности и динамики выполнения увода с опасной высоты Hоп при наличии достаточного запаса по высоте; возможность использования полученных результатов, после проверки эргодичности рельефа, в статистической обработке материалов; снижение количества полетов, необходимых для оценки МВК в условиях горной местности; увеличение времени испытательного полета и снижение расхода топлива и как следствие - уменьшение общего количества испытательных полетов на оценку МВК. 20 ил.

Изобретение относится к средствам управления самолетом по тангажу и крену. Боковая ручка управления самолетом с двумя вращательными степенями свободы включает рукоятку 11, основание 2 с двумя электроприводами (1а) поперечного канала и (1б) продольного канала, имеющими форму цилиндров и содержащими бесколлекторный электродвигатель, редуктор и датчик положения выходного звена. Продольные оси цилиндрических поверхностей электроприводов (1а, 1б) размещены параллельно продольной оси стержня рукоятки. На выходном валу каждого электропривода установлен четырехзвенный шарнирный механизм с тремя степенями свободы, состоящий из косого кривошипа (4а, 4б), выполненного в форме конической эксцентриковой втулки (5а, 5б), центральная ось которой закреплена на выходном валу электропривода (1а, 1б), а ее эксцентриковая ось выполнена с возможностью вращения относительно эксцентриковой втулки. На наружной поверхности конической эксцентриковой втулки установлен шарнир, ось (7а, 7б) которого расположена перпендикулярно оси электропривода (1а, 1б), на которой с возможностью вращения размещена вилка, так что ось электропривода, ось конической эксцентриковой втулки и ось вилки пересекаются в одной точке. Обеспечивается уменьшение массогабаритных показателей и унификация электроприводов. 3 н.п. ф-лы, 4 ил.

Заявленное изобретение относится к способу контроля исправности интегрированных блоков датчиков (ИБД). Способ заключается в том, что сравнивают назначенные пороговые величины, после включения бесплатформенной инерциальной системы (БИНС) осуществляют ускоренную проверку исправности навигационных датчиков в статическом положении определенным образом, если условия проверки выполняются, включают сигнал «Запуск разрешен», включают непрерывный контроль, используя резервные датчики, используя четырехкратное резервирование определенным образом, сравнивая их показания с показаниями датчиков основной навигационной системы. Обеспечивается повышение достоверности обнаружения отказа, точность контроля, эффективность выполнения полетных задач.

Изобретение относится к области машиностроения, а более конкретно к преобразованию вращательного движения в поступательное. Электромеханический привод поступательного действия содержит винт и гайку. Гайка состоит из сепаратора, в гнездах которого расположены тела качения, и корпуса с гладкой внутренней цилиндрической поверхностью. Сепаратор и корпус расположены коаксиально и жестко соединены между собой по торцам сепаратора донышками. Тела качения постоянно контактируют с поверхностями профиля винта, корпуса гайки и гнездами сепаратора, при этом гнезда сепаратора расположены по винтовой линии с шагом, равным шагу винта. В качестве тел качения могут применяться как шарики, так и ролики, выполненные с коническими торцевыми поверхностями и сферической вершиной, угол конуса которых соответствует углу наклона винтовой линии винта. Достигается увеличение нагрузочной способности. 3 ил.

Изобретение относится к области приборостроения и может найти применение в системах ориентации, определяющих параметры движения объекта, в частности перемещения, линейной скорости, угловой скорости относительно инерциальной, географической, стартовой или других систем координат. Технический результат – повышение точности. Повышение точности измерения углов ориентации на вертикальных или близких к ним траекториях полета летательного аппарата (ЛА) при использовании микромеханических датчиков угловой скорости достигается за счет того, что к текущему значению угла тангажа ϑ0 добавляют дополнительный угол 45 градусов, таким образом кинематические вычисления углов ориентации осуществляют относительно виртуальной системы координат (СК), повернутой по тангажу на угол 45 градусов по отношению к нормальной земной СК, далее этот дополнительный угол учитывают при навигационных расчетах. 12 ил.

Способ помощи в навигации для уточнения траектории летательного аппарата заключается в уточнении углов пространственного положения ЛА после отделения его от носителя с целью исключения отклонения управляемого автономного ЛА от заданной траектории. Способ включает в себя начальную выставку БИНС, счисление углов пространственной ориентации, скоростей, координат ЛА и формирование текущей траектории полета, осуществляет уточнение текущего значения угла крена, для чего выполняется проверка выхода угловой скорости относительно продольной оси (ωx) за ограничение пределов измерений датчика ДУС, автономное уточнение угла крена после устранения вращения ЛА, нахождения «площадки» для определения крена и вычисления крена методом скользящего среднего, при выполнении конкретных приведенных условий. Техническим результатом является уточнение траектории автономно управляемого ЛА путем определения его угла крена после отделения от носителя, используя сигналы своих же бортовых инерциальных датчиков. Способ позволяет повысить точность формирования текущей траектории ЛА без усложнения конструкции и увеличения трудозатрат. 1 ил.

Изобретение относится к области навигационного приборостроения и может найти применения при калибровке интегрированных систем навигации и позиционирования подвижных объектов различной физической природы. Технический результат – повышение точности. Для этого способ определения коэффициентов калибровки интегрированного блока датчиков (ИБД) включает вращение с помощью стендового оборудования последовательно как минимум по двум непараллельным осям в базисе калибруемого ИБД, во время вращения записывают показания ИБД по каналу датчиков линейного ускорения (ДЛУ), показания датчиков угловой скорости (ДУС), идентифицируя математическую модель ДУС, определяют нулевые сигналы ДУС, матрицу, описывающую масштабные коэффициенты, перекрестные связи, ориентацию осей чувствительности ДУС в ИБД, отличающийся тем, что дополнительно осуществляют вращение ИБД по заданному количеству 10 оборотов с выбегом, чтобы этапы разгона и торможения можно было исключить из массивов измерений, в диапазоне угловых скоростей ±0.5, ±2.5, ±10, ±40, ±120, ±240 градусов в секунду по трем осям внутренней связанной системы координат датчиков ИБД, исключают этапы разгона и торможения из измерений, образуют при этом массивы данных показаний ДУС и ДЛУ с постоянной частотой, например 100 Гц, на каждое вращение, путем специальной обработки полученной переопределенной системы, используя методы статистической обработки, осуществляют определение линейных приближений масштабных коэффициентов, уточнение масштабных коэффициентов с учетом асимметрии, определение нелинейной зависимости масштабных коэффициентов от скорости вращения в виде узлов интерполяции, общих для множества скоростей вращения, определение коэффициентов чувствительности и определение коэффициентов неортогональности осей чувствительности датчиков, причем проверка правильности определения коэффициентов калибровки может быть проведена после каждого этапа путем произвольного перемещения и вращения блока, и возврата в исходное состояние.

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. Технический результат - повышение точности способа коррекции бесплатформенной инерциальной навигационной системы (БИНС) по углам крена и тангажа, в частности, в условиях маневрирования летательного аппарата (ЛА). Способ включает в себя комплексирование сигналов, соответствующих угловой скорости и земной скорости объекта, с сигналами, соответствующими линейным ускорениям и преобразованными с учетом параметров полета объекта, и адаптивную оценку крена и тангажа посредством фильтра Калмана, в котором коэффициент усиления изменяется в зависимости от текущих значений модулей перегрузки и линейной скорости, а также угловых скоростей. Дополнительно используют сигнал, соответствующий продольной скорости объекта, полученный от системы воздушных сигналов (СВС) в виде функции от динамического давления, и сигнал, соответствующий продольному ускорению, полученный путем дифференцирования с последующим сглаживанием сигнала скорости от СВС. Кроме того, производят оптимизацию коэффициентов фильтра Калмана, для чего формируют девять обучающих последовательностей, назначают шесть коэффициентов фильтра, подлежащих настройке, и критерий качества в виде взвешенной среднеквадратической ошибки (СКО) ориентации по крену и тангажу, усредненной по времени и по множеству всех девяти обучающих последовательностей. Оптимизацию коэффициентов алгоритма осуществляют в три этапа. Первый этап заключается в численной минимизации критерия качества и определении коэффициентов для полетов в спокойной атмосфере. Второй этап заключается в численной минимизации критерия качества и определении коэффициентов для полетов в условиях турбулентности. Третий этап определяет процедуру, удовлетворяющую с достаточной точностью полетам как в спокойной атмосфере, так и в турбулентности, путем линейной интерполяции коэффициентов фильтра Калмана по результатам первого и второго этапов. Изобретение позволяет использовать датчики ДУС и ДЛУ средней и низкой точности, в том числе микромеханического типа, так как из-за непрерывной коррекции ошибки не накапливаются. Устройство не требует начальной выставки и обладает свойством самовыставки в течение нескольких секунд и может быть использовано на всех типах ЛА. 3 ил., 1 табл.

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. Технический результат - повышение точности курсовертикали путем обеспечения непрерывной коррекции углов тангажа и крена, в частности, в условиях маневрирования летательных аппаратов (ЛА) в полете. Устройство содержит трехкомпонентный блок датчиков угловых скоростей, трехкомпонентный блок датчиков линейных ускорений, корректор курса, вычислительный блок, блок формирования матрицы направляющих косинусов, фильтр Калмана и блок формирования функций измерений. Дополнительно в устройство введены блок оптимизации, блок формирования кватернионов, блок формирования матрицы погрешностей системы, система воздушных сигналов и дифференцирующее устройство, соединенные определенным образом. В результате предоставляется возможность применить датчики угловых скоростей и линейных ускорений средней и низкой точности, в том числе микромеханического типа, так как из-за непрерывной коррекции ошибки не накапливаются. Устройство не требует начальной выставки, обладает свойством самовыставки в течение нескольких секунд и может быть использовано на всех известных типах ЛА. 1 табл., 3 ил.

Изобретение относится к области навигации летательных аппаратов (ЛА) с использованием комплексного способа навигации, а также относится к области навигационных приборов для контроля и управления летательными аппаратами. Комплексный способ навигации летательных аппаратов, функционально объединяющий инерциальный способ навигации, спутниковый способ навигации и воздушно-скоростной способ навигации с использованием магнитометрических датчиков, при этом дополнительно осуществляют начальную выставку по курсу в процессе руления и разбега до момента отрыва летательного аппарата (ЛА) от ВПП, определение и списание девиации магнитометрических датчиков после набора высоты путем совершения полета по кругу, осуществляют процесс навигации в трех режимах: основной режим навигации, где инерциальную систему и систему воздушных сигналов (СВС) корректируют по сигналам спутниковой системы навигации (СНС), осуществляют двухуровневый контроль достоверности сигналов от приемника СНС и определяют погрешности измерения воздушной скорости и скорости ветра, используя сигналы СНС, альтернативный режим навигации, где инерциальную систему корректируют по сигналам СВС, которого включают при отсутствии сигналов от приемников СНС или достоверности сигналов от приемника СНС и резервный режим навигации, которого включают в случае отказа системы СНС и СВС, где используют адаптированную к возмущениям резервную систему определения углов пространственной ориентации, корректируемую по сигналам акселерометров и магнитометрических датчиков со списанной девиацией в полете, осуществляют оптимизацию коэффициентов адаптивной коррекции углов по сигналам акселерометров, в зависимости от режима полета ЛА. Техническим результатом является расширение функциональных возможностей, повышение надежности работы и эффективности навигации, а также повышение точности определения навигационных параметров в случае пропадания сигналов от приемника спутниковой навигационной системы (СНС).

Изобретения относятся к авиационной технике, а именно к способам и устройствам определения центра масс (ЦМ) летательного аппарата (ЛА) в полете. Способ основан на измерении параметров полета ЛА, включает в себя измерение ускорений относительно ЦМ в двух фиксированных точках, расположенных вдоль продольной оси ЛА на известном расстоянии друг от друга, при помощи акселерометров, установленных в этих точках, один в хвостовой, другой в головной частях фюзеляжа, использование значения ускорения силы тяжести и на их основе определение ЦМ в установившемся режиме полета при выполнении соответствующего маневра. В качестве измеряемых ускорений относительно ЦМ ЛА используют тангенциальные ускорения ЛА, для чего акселерометры устанавливают так, что их оси чувствительности противоположно направлены и параллельны вертикальной оси ЛА. Дополнительно используют сигнал от бортовой навигационной системы, соответствующий линейному ускорению ЛА относительно вертикальной оси, причем при определении центра масс выполняют поочередно маневры «кабрирование» и «пикирование». Устройство для осуществления способа включает в себя два акселерометра, бортовую навигационную систему, два суммирующих устройства, три умножителя, два делителя, блок определения косинуса и вычитающее устройство, соединенные между собой определенным образом. Технический результат заключается в упрощении реализации и применения, повышении точности измерений координат местоположения ЦМ ЛА. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области навигации летательных аппаратов (ЛА) с использованием комплексного способа навигации, функционально объединяющего инерциальный способ навигации, спутниковый способ навигации и воздушно-скоростной способ навигации, а также к навигационным приборам для контроля и управления летательными аппаратами. Предлагаемый малогабаритный навигационный комплекс содержит приемник спутниковой навигационной системы (СНС), интегрированный блок датчиков, система воздушных сигналов (СВС), трехкомпонентный магнитометрический датчик (МД), концевой выключатель обжатия стойки шасси, блок определения достоверности сигналов СНС, вычислительный блок, блок определения коэффициентов девиации МД, блок определения курса ЛА, блок резервной навигации, блок адаптации к турбулентности. Технический результат, достигаемый от реализации заявленного изобретения, заключается в сокращении времени начальной выставки, повышении надежности и повышении точности определения истинного курса. 1 табл., 1 ил.

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. Технический результат - повышение точности и обеспечение непрерывности коррекции углов курса, тангажа и крена подвижного объекта, в частности летательного аппарата (ЛА) в условиях маневрирования в полете. Для этого устройство содержит трехкомпонентный блок датчиков угловых скоростей, трехкомпонентный блок датчиков линейных ускорений, трехкомпонентный магнитометрический датчик, вычислительный блок, блок формирования матрицы направляющих косинусов, фильтр Калмана и блок формирования функций измерений, соединенных между собой соответствующим образом. В устройство дополнительно введены блок определения параметров напряженности магнитного поля Земли, подключенный к вычислительному блоку, блок формирования кватернионов, первый, второй и третий входы которого соединены соответственно с первым выходом вычислительного блока, с выходом трехкомпонентного блока датчиков угловых скоростей и со вторым выходом фильтра Калмана, и блок формирования матрицы погрешностей системы, первый и второй входы которого соединены соответственно с выходами трехкомпонентного блока датчиков угловых скоростей и трехкомпонентного блока датчиков линейных ускорений, а выход подключен ко второму входу фильтра Калмана. Выходы вычислительного блока по сигналам курса, тангажа и крена являются выходами устройства. Изобретение позволяет использовать магнитометрические датчики, датчики угловой скорости (ДУС) и линейного ускорения (ДЛУ) средней и низкой точности, в том числе микромеханического типа. Кроме того, в процессе определения магнитного курса списывается остаточная девиация трехкомпонентного магнитометрического датчика магнитного курса и сглаживаются ошибки измерения магнитного курса из-за аномальных магнитных полей. 2 ил.

Изобретение относится к области навигации летательных аппаратов (ЛА) с использованием комплексного способа навигации и может быть использовано при осуществлении навигации высокодинамичных ЛА в сложных навигационных условиях. Технический результат - расширение функциональных возможностей навигационного комплекса (НК), повышение живучести, надежности и отказобезопасности комплексной навигации. Для этого на основе автономной реконфигурации архитектуры и структуры НК обеспечивается возможность продолжения полета и выполнения задания при наличии нескольких отказавших элементов в структуре НК. Эксплуатация НК осуществляется без наземной контрольно-проверочной аппаратуры. НК содержит интегральный блок датчиков, выполненный трех или более кратно резервированным, магнитометрический датчик, систему воздушных сигналов, спутниковую навигационную систему, радиотехническую навигационную систему, лазерный дальномер, оптико-электронную и астронавигационную систему. В НК дополнительно введены трех или более кратно резервированные вычислительные устройства, трех или более кратно резервированные блоки резервной навигации, трех или более кратно резервированные программно-алгоритмические модули кворумирования и реконфигурации каждого канала входного и выходного сечения сигналов управления, датчиков и вычислителей-резервов, трех или более кратно резервированные блоки хранения базы данных на программно-алгоритмическое обеспечение (ПАО) режимов начальной подготовки, трех или более кратно резервированные блоки хранения моделей датчиков и бортовых систем навигации и трех или более кратно резервированные блоки хранения ПАО комплексной обработки информации. 1 з.п. ф-лы, 1 ил.

Система дистанционного управления вертолетом содержит два поста управления с органами управления и датчиками положения ручек управления (ДПР), четыре блока управления приводом (БУП), два интегрированных блока датчиков (ИБД), два блока преобразования сигналов (БПС), блок резервной навигации (БРН), четыре электромеханических привода, блок кворумирования сигналов резервных каналов (БКС), блок управления архитектурой (БУА), два вычислительных устройства (ВУ), комплекс бортового оборудования (КБО), соединенные определенными образом. Обеспечивается повышение надежности системы дистанционного управления путем обеспечения возможности реконфигурации оборудования. 1 ил.
Изобретение относится к области навигации летательных аппаратов (ЛА) с использованием комплексного способа навигации и может найти применение при осуществлении навигации высокодинамичных ЛА в сложных навигационных условиях. Технический результат - расширение функциональных возможностей навигационного комплекса и повышение живучести, надежности и отказобезопасности работы комплексной навигационной системы. В основу предлагаемого способа положено многократное резервирование каналов информационного обмена, датчиков, вычислителей и средств контроля и реконфигурация архитектуры вычислительных устройств и структуры навигационного комплекса в зависимости от состояния модулей вычислительных устройств и бортовых систем навигации ЛА. Способ предусматривает использование инерциальной навигации, системы воздушных сигналов, спутниковой навигации, радиотехнических систем, оптикоэлектронной системы навигации и астронавигации и других бортовых навигационных систем, а также применение фильтра Калмана. Дополнительно контролируют модули вычислителей, все входящие и выходящие сигналы на предмет адекватности их пороговым и модельным значениям, назначаемым самим комплексом на основе анализа текущих параметров. Осуществляют обработку множества измеренных параметров первичной навигационной информации, полученных от различных бортовых навигационных систем, путем нахождении оптимальной, адаптивной или робастной оценки текущих навигационных параметров ЛА. При этом используют модифицированные оптимальные, адаптивные и робастные алгоритмы обработки навигационной информации в зависимости от уровня ошибок, шумов, достоверности и возникшей проблемной ситуации с поступающей информацией, а также программу логических моделей и (или) нейросетевые алгоритмы для принятия решения о реконфигурации архитектуры вычислительных модулей резервированных вычислителей и реорганизации структуры всего комплекса навигации. 3 з.п. ф-лы.

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. Технический результат - повышение точности и обеспечение непрерывности коррекции углов курса, тангажа и крена подвижного объекта, в частности ЛА в условиях маневрирования в полете. Указанный результат достигается за счет того, что согласно данному способу, при котором коррекция углов крена и тангажа подвижного объекта осуществляется путем обработки сигналов ДЛУ и ДУС, использования адаптивной обработки посредством фильтра Калмана и измерения магнитного курса магнитометрическим датчиком, дополнительно определяют вертикальную и горизонтальную проекции абсолютного значения магнитного поля Земли на плоскости магнитного меридиана с учетом угла магнитного наклонения по известным координатам местоположения, определяют разность измеренных значений проекций магнитного поля Земли трехкомпонентным магнитометрическим датчиком и проекций составляющих магнитного поля Земли, определенных по текущим координатам подвижного объекта при помощи матрицы направляющих косинусов на связанную ось. Минимизируя полученную разность путем использования фильтра Калмана, получают скорректированные текущие значения магнитного курса, углов тангажа и крена объекта. 1 з.п. ф-лы.

Изобретения относятся к области систем навигации летательных аппаратов (ЛА) и могут быть использованы при выставке бесплатформенных инерциальных навигационных систем летательного аппарата (БИНС ЛА) корабельного базирования. Технический результат - сокращение времени выставки БИНС ЛА на корабле при обеспечении требуемой точности. Для этого способ выставки БИНС ЛА, основанный на совместной обработке методом фильтрации Калмана выходных сигналов БИНС ЛА и ИНС корабля базирования, соответствующих угловым скоростям, измеренным трехкомпонентными датчиками угловых скоростей (ДУС), установленными на ЛА и на корабле, дополнительно включает в себя измерение значения курса ЛА относительно географического меридиана (ψг), причем выставку осуществляют в два этапа. На первом этапе измеряют линейные ускорения вдоль осей связанной системы координат корабля базирования и связанной системы координат ЛА, определяют координаты БИНС ЛА относительно ИНС корабля и осуществляют выставку по крену и тангажу путем согласования векторов перегрузок с использованием статистического фильтра Калмана второго порядка, при этом выставка может выполняться как в статическом положении корабля базирования, так и при его качке и маневре. На втором этапе осуществляют выставку в азимуте путем измерения и согласования векторов угловых скоростей корабля базирования и ЛА и измерения линейных ускорений вдоль осей связанных систем координат корабля базирования и ЛА, причем, если в течение 5-10 секунд отсутствует качка корабля с угловыми скоростями ωx<2-3 град/с, выполняют маневр корабля типа «зигзаг» и производят обработку сигналов измерения, используя фильтр Калмана третьего порядка с размерностью вектора измерений, равной шести. Устройство, реализующее данный способ выставки БИНС ЛА корабельного базирования, включающее ИНС корабля базирования и БИНС ЛА, базирующегося на корабле, дополнительно содержит блок формирования матрицы Якоби, задатчик курса и координат точки базирования ЛА, первый статистический фильтр Калмана второго порядка и второй статистический фильтр Калмана третьего порядка, причем выходы ИНС корабля и БИНС ЛА подключены к блоку формирования матрицы Якоби. Первый выход блока формирования матрицы Якоби и выход задатчика курса и координат точки базирования ЛА подключены к соответствующим входам первого статистического фильтра Калмана. Второй выход блока формирования матрицы Якоби и выходы первого статистического фильтра Калмана подключены к соответствующим входам второго статистического фильтра Калмана, выходы которого подключены к соответствующим входам БИНС ЛА, базирующегося на корабле. 2 н. и 2 з.п. ф-лы, 5 ил.

Самолет содержит фюзеляж, крыло, оперение, шасси, силовую установку, комплексную систему управления. Комплексная система управления содержит вычислительный блок, приводы рулевых поверхностей и поворотных сопел силовой установки, датчики движения самолета, внутреннюю и внешнюю мультиплексные линии связи, кабельную сеть, блок преобразования сигналов, информационно-управляющую систему, вычислитель воздушно-скоростных параметров, приемники-преобразователи воздушных давлений (ППВД), ППВД во внутреннем отсеке самолета, датчики температуры заторможенного потока, блок управления шасси (БУШ), исполнительные механизмы поворота и торможения колес, датчики исполнительных механизмов поворота и торможения колес, датчики обжатия амортизаторов шасси, датчики частоты вращения шасси, соединенные определенным образом. БУШ содержит вычислители сигналов управления исполнительными механизмами поворота и торможения колес, усилители мощности. Обеспечивается снижение психофизиологической нагрузки на летчика, снижение радиолокационной заметности, улучшение массово-габаритных характеристик самолета, улучшение управляемости при движении по взлетно-посадочной полосе. 2 з.п. ф-лы, 2 ил.

Изобретение относится к бортовым вычислительным системам и может быть использовано для построения высоконадежных отказоустойчивых комплексных систем управления (КСУ) полетом летательных аппаратов (ЛА). Техническим результатом является повышение живучести, надежности и отказобезопасности системы. Система содержит на каждом посту управления летчика ручку управления с четырехкратно резервированными датчиками положения ручки (ДПР) по количеству каналов управления (крен, тангаж, рыскание), пульт управления, резервированные вычислители (ВУ) системы автоматического управления, четырехкратно резервированные ВУ системы дистанционного управления, четырехкратно резервированный интегральный блок датчиков, четырехкратно резервированный блок резервной навигации, три четырехкратно резервированных блока управления приводами, приводы, число которых определяется числом рулевых поверхностей ЛА и потребной степенью резервирования. 2 н. и 16 з.п. ф-лы, 6 ил.
Изобретение относится к способу управления полетом летательного аппарата (ЛА). Для управления полетом ЛА выполняют вычислительные операции с резервированным процессорным определением локальных сигналов управления, передают данные по разветвленной сети из линии передачи данных, осуществляют согласование управляющих сигналов, направляют их к исполнительным органам, производят контроль исправности резервированных каналов управления, размещенных по два резерва на левом и правом борту ЛА, по результатам проверки автоматически производят реконфигурацию структуры блоков вычисления и управления, выбирают один из трех режимов управления: основной, альтернативный (упрощенный) или резервный (аварийный) в зависимости от количества обнаруженных отказов. Обеспечивается расширение функциональных возможностей управления полетом ЛА, его живучесть и отказобезопасность.

Изобретение относится к системам управления аэродинамическими поверхностями самолетов. Исполнительный механизм системы управления содержит блок управления и рулевой привод. Рулевой привод содержит тахогенератор, датчик положения ротора, двухступенчатый редуктор, шарико-винтовую пару, датчик обратной связи, соединенные определенным образом. Блок управления содержит вторичный источник электропитания, датчик потребляемого тока, приемо-передающий блок, микроконтроллер, блок управления силовыми ключами, силовой блок, блок проверки исправности микроконтроллера, блок включения режима демпфирования и торможения, соединенные определенным образом. Обеспечивается расширение функциональных возможностей электромеханического рулевого привода, повышение стабильности и точности. 3 ил.

 


Наверх