Патенты автора Филонин Олег Васильевич (RU)

Изобретение относится к оптической томографии, физике космических лучей и может быть использовано для определения трехмерных функций распределения различных параметров низкотемпературной плазмы, индуцированной газовым разрядом вокруг исследуемого объекта в условиях влияния космических факторов на околоземных орбитах. В качестве объекта исследования может выступать биологический объект, конструкционный, полупроводниковый элемент, образец жидкой смазки. Устройство представляет собой малоракурсную оптическую томографическую систему и состоит из модуля сбора и обработки исходных проекционных данных, размещенного на борту наноспутника, и вычислительного модуля, расположенного на Земле. На борту наноспутника производится пересчет исходных 2D проекций из декартовой сетки в полярную и осуществляется усечение данных до требуемого формата. На Земле недостающие проекции доопределяются с помощью процедур интерполяции по кольцевым гармоникам, методом обратного проецирования с фильтрацией (свертка во временной области) восстанавливаются искомые распределения в параллельных плоскостях. Полученные трехмерные распределения отображаются в виде стереоскопических изображений их изопараметрических поверхностей. Технический результат – возможность восстановления трехмерного распределения параметров индуцированной плазмы. 4 ил.

Изобретение относится к космической технике. Роботизированный наноспутниковый комплекс спасения космонавтов содержит высокоточную систему отделения с электромеханической лебедкой и катушкой спасательного троса. Комплекс включает в свой состав наноспутник с системой активного маневрирования, системой наведения и возможностью перехвата и фиксации космонавта. Система управления выполнена с возможностью обеспечения мониторинга внекорабельной деятельности, детектирования возникновения нештатной ситуации. Система управления активирует работу комплекса путем оценки параметров относительного движения космонавта. Спасательный трос лебедки, установленной в пусковом контейнере на космической станции, другим концом скреплен с наноспутником. Передний по полету торец наноспутника снабжен стыковочным устройством. Техническим результатом изобретения является обеспечение безопасного выполнения внекорабельной деятельности с повышением вероятности спасения космонавта в случае потери контакта с кораблем. 3 з.п. ф-лы, 4 ил.

Изобретение относится к космической технике и может быть использовано для выведения наноспутников на заданные траектории и с заданными скоростями с борта космических станций. Устройство отделения наноспутников состоит из электромеханической системы запуска магнитоиндукционного типа и электронного модуля управления ею. Устройство содержит сильноточный соленоид, помещенный в рабочий зазор системы постоянных неодимовых магнитов, состоящей из набора кольцевых магнитов и соосно установленного неодимового цилиндрического магнита, заключенных в корпус из магнитомягкого материала. Соленоид подключен через ключевое устройство к обмотке, соединенной с микропроцессором. Платы модуля управления размещены в вакуумированных отсеках, что дает возможность долговременной эксплуатации в открытом космосе. Устройство содержит автономную систему энергопитания, состоящую из аккумуляторов, солнечных панелей и контроллера их заряда, который управляется микропроцессором. Техническим результатом является повышение кинетической энергии при запуске отделяемого аппарата. 2 з.п. ф-лы, 2 ил.

Группа изобретений относится к космической технике. Способ запуска микро- и наноспутников заключается в том, что после установки запускаемого спутника с одноосным гироскопом на основании и после выбора с помощью электромеханической системы ориентации заданного направления производится раскрутка гироскопа и запуск аппарата. Электромеханическая часть микропроцессорной магнитоиндукционной системы запуска содержит механизмы поворота планшайбы запуска в азимутальном и зенитном направлениях, приводимые в действие шаговыми двигателями, управляемыми по командам микропроцессора. Для формирования механического импульса запуска служит соленоид, помещенный в рабочий зазор магнитной системы. Электромеханическая система также содержит электромагнит, фиксирующий спутник с установленным на его нижнем основании одноосным гироскопом. Микропроцессор системы запуска отключает электромагнит в момент отделения. Техническим результатом группы изобретений является обеспечение управляемого запуска наноспутников и микроспутников с сохранением ориентации в пространстве относительно главной оси отделенного аппарата. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к космической технике и может быть использовано для запуска спутников. Устройство управляемого запуска наноспутников и микроспутников содержит платформу с наноспутником или микроспутником, шток, конденсаторы, систему ориентации с внешним и внутренним корпусами, электродвигателями и подшипниками, магнитоиндукционный эжектор с двумя плотно прижатыми поджимной пружиной катушками индуктивности соленоидального типа, размещенными в сердечнике броневого типа из ферромагнитного материала и попарно запрессоваными в стаканы, электронную систему управления запуска с микроконтроллером, коммуникатором, блоком управления зарядом, драйверами электродвигателей, ключевыми устройствами и переключателем выводов обмотки. Изобретение позволяет повысить КПД устройства запуска. 3 з.п. ф-лы, 2 ил.

 


Наверх