Патенты автора Абрамов Валентин Алексеевич (RU)

Изобретение относится к разработкам глубоководных морских месторождений природного газа (ПГ), в частности при освоении арктических месторождений ПГ, посредством морской добывающей платформы TLP, осуществляющей осушку, очистку ПГ вплоть до соответствия ПГ ГОСТ 5542 и ГОСТ 27577. Вывоз сжиженного природного газа (СПГ) осуществляется атомным подводным мембранным газовозом, на котором размещены установки получения СПГ и осуществляют повторное сжижение испаряющегося в танках СПГ во время рейса газовоза. Поставка ПГ на борт газовоза с морской платформы TLP производится гибким газопроводом. Электрообеспечение осуществляется атомной электростанцией газовоза. Уменьшенный выброс метана в атмосферу Земли достигается сокращением времени выхода на рабочий режим агрегатов установки охлаждения и сжижения ПГ и в первую очередь криогенно-газовых машин (КГМ) Стирлинга сжижения и переохлаждения СПГ на их предварительное захолаживание азотом криогенной температуры и выбросом его в атмосферу Земли. Сокращение выброса метана в атмосферу Земли, который вредоноснее углекислого газа. и экономия СПГ при разработке крупномасштабных месторождений ПГ составляют в изобретении экологический и технико-экономический эффекты. 8 з.п. ф-лы, 5 ил.

Изобретение относится к разработке глубоководных морских месторождений природного газа. Предложен способ обеспечения жизнеспособности функционирования комплекса производства сжиженного природного газа (СПГ) с уменьшенным выбросом метана в атмосферу Земли, например при освоении Штокмановского газоконденсатного месторождения (ШГКМ), включающий морскую добывающую платформу TLP, плавучее средство доставки завода СПГ на свайную платформу, сооруженную на грунте морского дна, завод, установленный на платформе посредством сборочной единицы цеха и камеры, прикрепленной болтовым соединением к дну цеха и прижатой к платформе гравитационной силой, плавучее средство, снабженное электроприводными самотормозящими лебедками с барабанами канатов, концы которых прикреплены к сборочной единице цеха и камеры с возможностью стравливания/наматывания канатов с барабанов лебедок и установки завода на любом горизонте толщи воды, включая поверхность моря, при этом охлаждение природного газа (ПГ) в теплообменниках, размещенных на морской платформе TLP, производят посредством их соединения с установками охлаждения, сжижения ПГ и переохлаждения СПГ, размещенными в цехе завода СПГ, посредством гибкого герметичного газопровода транспорта ПГ, с исключением выброса метана в атмосферу установками получения СПГ цехов завода путем быстрого выхода на рабочий режим установок СПГ путем их предварительного захолаживания азотом, установку на сборочной единице водометных движителей и лебедочных агрегатов на свайной платформе, причем образующийся лед в зазорах между опорными поверхностями сборочной единицы с камерой и свайной платформы удаляют путем его плавления высокотемпературным водяным паром и его продувкой по каналам с выпуском пара в морскую толщу воды, дополнительное производство электроэнергии в комплексе производят паротурбогенераторами, установленными в герметичной камере, снижение адгезии в контактных поверхностях, а равно и усилия отрыва завода СПГ от свайной платформы эстакады осуществляют путем нанесения фтортензитов Валкон-2 или Валкон-4 на поверхности опор, прикрепленных к заводу СПГ и свайной платформе эстакады, или осуществляют гидравлическими двигателями, или отрыв в адгезионном стыке опорных поверхностей свайной платформы и сборочной единицы цеха с камерой производят посредством пьезоактюаторов, жестко закрепленных на стороне свайной платформы, обращенной к грунту. Сокращение выброса метана в атмосферу Земли и экономия СПГ при разработке ШГКМ составляют в изобретении экологический и технико-экономический эффекты. 4 з.п. ф-лы, 13 ил.

Изобретение относится к разработкам глубоководных морских месторождений природного газа (ПГ), в частности, при освоении арктического Штокмановского газоконденсатного месторождения (ШГКМ) посредством морской добывающей платформы природного газа, осуществляющей осушку, очистку ПГ вплоть до соответствия ПГ ГОСТ 5542 и ГОСТ 27577. Вывоз СПГ со ШГКМ осуществляется метановозами. Поставка охлажденного ПГ в теплообменнике, размещенном на фундаменте коффердама морской платформы, на установки ХТА охлаждения ПГ до низких, криогенных температур, получения и переохлаждения СПГ, размещенные на фундаментах коффердама метановоза, осуществляется гибким газопроводом, проходящим в толще морской воды, выполненным из секций, сопряженных фланцевыми герметичными соединениями с кольцами в канавках и сферическими шарнирами, сопряженные поверхности которых покрыты твердосмазочными материалами, например дисульфидом молибдена, и уплотняются по сферическим поверхностям шарниров. Электрообеспечение криогенно-газовых машин (КГМ) Стирлинга осуществляется детандер-генераторными агрегатами (ДГА) турбодетандеров посредством электрических кабелей метановоза. Снижение выброса метана в атмосферу Земли осуществляется сокращением времени выхода на рабочий режим КГМ Стирлинга сжижения ПГ на один час или 10 тонн СПГ/час путем переключения КГМ Стирлинга сжижения ПГ на ее предварительное захолаживание азотом до температуры сжижения ПГ минус (162°С…165°С). Сокращение выброса метана в атмосферу Земли и экономия СПГ при разработке ШГКМ составляют в изобретении экологический и технико-экономический эффекты. 1 з.п. ф-лы, 6 ил.

Изобретение относится к разработке глубоководных морских месторождений природного газа, в частности арктического Штокмановского газоконденсатного месторождения. Предложен комплекс производства сжиженного природного газа (СПГ) с уменьшенным выбросом метана в атмосферу Земли, повторного сжижения испарившегося в рейсе, в мембранных танках метановоза, природного газа (ПГ), включающий плавучую морскую платформу TLP добычи, осушки, очистки ПГ вплоть до требований ГОСТ 5542 и концентрации влаги выше требований ГОСТ 27577 - 0,009 г/м3, морскую систему транспорта цеха завода на платформу эстакады, систему транспорта ПГ газопроводом на подводный завод и систему охлаждения ПГ в цехе завода до низких и криогенных температур, причем система охлаждения до низких и криогенных температур ПГ комплекса выполнена последовательным соединением теплообменников, установленных на фундаментах цехов завода или платформы TLP, трехпоточных вихревых труб (ТВТ), установленных на фундаментах цехов завода, турбодетандеров цехов завода с детандер-генераторными агрегатами (ДГА), с выработкой электроэнергии на заводе с передачей ее по электрокабелям на метановоз для функционирования электроприводов криогенно-газовых машин (КГМ) Стирлинга при сжижении, загрузке СПГ в танки, при этом уменьшение выброса метана в атмосферу Земли осуществляют сокращением времени выхода на рабочий режим, преимущественно КГМ Стирлинга сжижения ПГ, путем переключения КГМ Стирлинга сжижения ПГ на ее захолаживание азотом, предварительно, до температуры сжижения ПГ или ниже, повторное сжижение испарившегося СПГ в рейсе на метановозе осуществляют КГМ Стирлинга и посредством электроприводов и электроэнергии, вырабатываемой в рейсе газотурбинной электростанцией с паровым циклом, сопряжение КГМ Стирлинга сжижения ПГ, охлаждающих ПГ до криогенных температур, размещенных в коффердаме, с танками метановоза и с турбодетандерами, размещенными на заводе, осуществляют посредством гибкой сборной конструкции «труба в трубе». 9 з.п. ф-лы, 11 ил.

Изобретение относится к производству изделий, в которых необходимо регулирование скорости цифровой системой управления при постоянном вращающем моменте. Устройство для получения вращательного движения включает корпус, крышку, выходной вал, установленный в опоре крышки, пьезопреобразователь, установленный на крышке, гибкий элемент, выполненный в виде оболочки с кулачком, контактирующим, по крайней мере, с одним подшипником. Устройство снабжено двумя крышками и двумя эллиптическими цилиндрами, выполненными на кулачке, наружным и внутренним, преимущественно с равными разностями полуосей эллиптических цилиндров, выполненным заодно с оболочкой гибкого элемента, сопряженного зубчатым соединением, например, волновым, с эллиптическим наружным генератором и гибким подшипником волнового редуктора. Устройство оснащено бипьезоэлектрическим преобразователем, составленным из четного числа одиночных пьезопреобразователей, контактирующих упруго с эллиптическими цилиндрами кулачка, наружным и внутренним, посредством промежуточных тел, сферических подшипников, дифференциальных винтовых механизмов, т.е. регулирующих натяг устройств, установленных на одноплечих и двуплечих рычагах, установленных в опорах на неподвижных основаниях, прикрепленных к кольцевым выступам крышек, выполненных по крайней мере в виде одной пары стержневых пьезопреобразователей из пьезоактивных дисков равных поперечных сечений, одной пары двухчастевых распорок, соединенных лазерной сваркой, в том числе круговым швом. Одна часть распорки выполнена в виде балки, имеющий прямоугольное основание со стойками корытного переменного сечения по высоте, снабженной на одной стойке сквозным отверстием. Другая часть распорки выполнена в виде балки, имеющей основание со сквозным отверстием в балке коробчатого сечения со стойками, снабженными уголками, и одиночного с головкой стержня или составной трехчастевой шпильки и метрической резьбой, ввинченных в накладку и установленных с зазором во втулку, запрессованную в основание балки коробчатого сечения, и вторым концом, выполненным со сферическим углублением на торце. Парные пьезостержни, парные распорки, соединенные последовательно жестко торцами, и одиночный стержень с метрической резьбой, застопоренный фиксатором резьбовых соединений, выполнены равных размеров по длине, с равными встречными температурными деформациями парных пьезостержней, распорок и одиночного стержня из конструкционного материала или трехчастевого стержня или шпильки, выполненных из материалов с разными температурными коэффициентами линейного расширения. Изобретение направлено на обеспечение регулирования скорости цифровой системой управления при постоянном вращающем моменте. 6 з.п. ф-лы, 16 ил.

Изобретение относится к разработке глубоководных морских месторождений сжиженного природного газа (СПГ), в частности при освоении арктического Штокмановского газоконденсатного месторождения, посредством скрепленных цехов с камерами, стационарных, с возможностью вывода завода СПГ, расчлененного на цехи, и установки цехов на платформе эстакады на глубине 300 метров и более. Сборочные единицы цехов с камерами, герметичные, транспортируются посредством подводного танкера или баржи, подвешены на канатах, намотанных на барабаны самотормозящих лебедок, установленных на внешней стороне корпуса танкера. Завод (цех) может быть поднят на водную поверхность при необходимости, например для смены персонала и замены оборудования химико-технологических агрегатов (ХТА), при помощи лебедок танкера, а танкер выведен на местоположение платформы эстакады посредством системы динамического позиционирования, а также автоматизированной системы установки цеха по производству СПГ на донную платформу, установленную на морском дне вблизи места добычи природного газа, имеющей модульную конструкцию; включающую систему гидроакустических излучателей, приемников, движителей, системы управления и точной фиксации завода (цеха) СПГ на донной платформе. Созданная креативная сборочная единица, состоящая из скрепленных герметичных цеха и камеры, с разностью выталкивающей силы и веса этой сборочной единицы, помещенной в воду, сильно отличается при заполнении газообразным азотом или морской водой. Во втором случае сборочная единица будет давить с большей силой на платформу и не потребуется болтового соединения для предотвращения сдвига сборочной единицы относительно свайной платформы эстакады, образованной на грунте моря, в том числе и на горизонте 100 м глубины, при течении 1-4 см/с. В первом случае, когда камера сборочной единицы заполнена азотом, уменьшаются натяжение каната лебедок, вес каната, крутящий момент привода лебедок, водоизмещение и стоимость транспортирующего подводного танкера, упрощается замена оборудования и персонала завода, ремонт ХТА завода СПГ. 14 з.п. ф-лы, 7 ил.

Изобретение относится к волновому пьезоэлектрическому переменно-скоростному приводу с постоянным моментом с возможностью реализации задатчика интенсивности в виде цифрового управления в широком диапазоне от единиц Н*м до сотен Н*м, например в приводах автоматики, роботов, арматуры и фармакологических барботерах (реакторах) с высокими старт-стопными характеристиками, а также для функционирования в вакууме и других средах. Сущность изобретения заключается том, что волновой однопарный пьезоэлектрический двигатель, включающий корпус, выходной вал, установленные на двух опорах каждый, является виброустойчивым, содержит пьезопреобразователи (ПЭП), изменяющие геометрическую форму в окружном направлении с цилиндрической формы на эллиптическую форму, например, кольца или цилиндра; при подключении ПЭП источника многофазного напряжения в ПЭП и, сопряженным с ним гибким подшипником, в ПЭП возникают бегущие волны деформации, которые увлекают за собой через гибкий подшипник эллиптический кулачок, выполненный заодно с выходным звеном, благодаря чему выходные звенья приводятся совместно во вращательное движение. При соответствующей настройке амплитуды, частоты и фазы источника многофазного напряжения, однопарный двигатель передает практически всю полезную мощность на выходной вал при стабильном крутящем моменте. В сепараторах подшипников опор, выходных звеньев, выходного вала и гибких подшипников трение скольжения заменено трением качения в сепараторе из шариков и введением ограничителей разных конструкций осевого перемещения шариков и их выкатывания за пределы дорожек, что предотвращает заклинивание подшипников и уменьшает трение в них. Технический результат, заключающийся также и в эффективном отводе тепла от ПЭП с целью поддержания материала призм ниже точки Кюри, обеспечивается системами охлаждения. Однопарный двигатель выполнен в герметичном исполнении. Массовое изготовление пьезоэлементов специализированными заводами и отработанные технологии изготовления ПЭП в РФ позволят малому и среднему бизнесу (МСБ) в России освоить производство пьезодвигателей. 1 з.п. ф-лы, 13 ил.

Изобретение относится к электромеханическому переменно-скоростному приводу с редуктором для редуцирования чисел оборотов ведомого вала устройства при его непрерывном, прерывистом и реверсивном вращении и способе передачи вращения в герметизируемый объем через сплошную металлическую стенку в вакуум и другие среды при нормальной температуре и повышенной до 150°C и давлении от 10-6 мм рт. ст. до нескольких атмосфер от ведущего звена к ведомому волнообразными упругими деформациями, генерируемыми в герметизируемом звене передачи механическим генератором волн, приводимым волновым пьезоэлектрическим двигателем во вращение, а также в виде герметичного варианта способа передачи вращательного движения в герметизируемый объем объекту. Примерами применения могут быть приводы для помешивающих фармакологических барботеров, установок выращивания кристаллов, роботов, трубогибочных станков, миксеров, приводов арматуры, опорно-поворотных устройств. Сущность изобретения заключается в том, что устройство для получения вращательного движения, включающее неподвижное основание, корпус, крышки, выходной вал, установленный в опорах, два гибких деформируемых колеса волновой передачи, два составных двухволновых пьезогенератора волн деформации, в совокупности образующие бисистему устройства, функционирующую по встречным направлениям, от одного коммутатора, составленные из отдельных, закрепленных посредством накладок, равномерно расположенных в окружном направлении пьезопреобразователей на неподвижных основаниях, контактирующие посредством накладок пьезопреобразователей и промежуточных тел с одноплечими рычагами, установленными в опорах, составленных из пластин и колец с отверстиями для осей в проушинах, отличается тем, что составленные опоры одноплечих и двухплечих рычагов, образованные из жестко соединенных пластин и колец, выполнены в осевом направлении соосными и установлены жестко на съемных крышках корпуса устройства, пьезоэлектрические преобразователи генераторов выполнены в виде однорядных, установленных параллельно в одной плоскости, из дисков и пластин, причем парные стержни расположены симметрично относительно одиночного стержня, при этом концы стержней соединены последовательно жестко накладками, а торцы дисков, шайб, пластин, отдельных стержней соединены электрически посредством электродов. Достигаемый в изобретении технический результат заключается в множественной однотипности единичных пьезоэлектрических преобразователей и основного элемента для выполнения требуемых функций: пьезоэлемента-диска, выпускаемого в массовых объемах на специализированных предприятиях и освоенных технологий изготовления стержневых дисковых пьезопреобразователей. Устройство может быть применено в машинах, агрегатах, аппаратах, в которых необходимо регулирование скорости цифровой системой управления при постоянном вращающем моменте. 4 з.п. ф-лы, 13 ил.

Изобретение относится к тяжелым карьерным гусеничным экскаваторам, в частности к устройствам натяжения каната экскаватора в регулярном режиме их обслуживания. Технический результат заключается в упрощении операции сборки барабанов, а также снижении на 40% веса зубчатой втулки. Технический результат достигается тем, что в устройстве, включающем два жестко соединенных разъемных барабана, напорный и возвратный, с возможностью их сцепления/рассоединения и регулярного многократного выбора слабины и обеспечения натяга каната посредством стопорения возвратного барабана относительно неподвижного основания, согласно изобретению торцы зубьев открытых зубчатых венцов зубчатой втулки, наружного и внутреннего, и вала напорного барабана выполнены симметрично скошенными внутрь впадин открытых зубчатых венцов втулки и вала под углом 45±5° при ширине вертикальной площадки на торцах зубьев, равной 3…4 мм или больше на полную высоту зубьев наружного и внутреннего, открытых зубчатых венцов зубчатой втулки и вала барабана, при этом на торцах вала открытых зубчатых венцов, наружного и внутреннего зубчатой втулки выполнены кольцевые глухие расточки шириной 3 мм или больше на глубину величин выхода скосов на зубьях диаметрами: больше диаметра впадин наружных венцов вала и втулки и меньше диаметра впадин для внутреннего зубчатого венца втулки, при этом взаимодействие зубьев при сборке наружного и внутреннего венцов зубчатой втулки с ответными зубчатыми венцами на барабанах, выполнено при широких впадинах между зубьями наружного и внутреннего венцов, выполненных на зубчатой втулке и валу барабана специальным модифицированным зуборезным эвольвентным инструментом с уменьшенным диаметром впадин, причем срезы на скошенных зубьях выполнены, например, электроэрозионным инструментом, при этом зубчатая втулка изготовлена из титанового сплава, например сплава ВТ 20. 3 з.п. ф-лы, 7 ил.

Изобретение относится к области машиностроения, а более конкретно к способу изготовления кулачков волновой передачи. Способ изготовления кулачков генераторов волновой передачи наружных и внутренних контуров включает выполнение контура кулачка режущим инструментом или электроэрозионной обработкой. При этом контур определяется заданием двух пар дуг окружностей. Одна из этих пар дуг окружностей с центрами, расположенными на большой оси эллипса, равной 2a, от вершин эллипса к центру, имеет радиус . Другая пара окружностей располагается на малой оси эллиптического контура, равной 2b, и имеет радиус R= (I+G)/(2). Дуги окружностей радиусом r сопрягают с дугами окружностей радиусом R. I - квадрат разности длин малой полуоси b и фокального параметра p эллипса кулачка, G - произведение суммы и разности длин большой полуоси a и малой полуоси b эллипса кулачка. Достигается повышение технологичности. 2 ил.

Изобретение относится к области машиностроения, а более конкретно волновым передачам. Способ изготовления кулачков генераторов волновой передачи, в котором контур кулачка выполняют заданием двух пар дуг окружностей. Одна парой дуг окружностей с центрами, расположенными на большой оси эллипса на расстоянии радиусами «r», где r=b2/а. Эти дуги сопрягают дугами окружностей цилиндров радиусов R кулачка другой пары, описываемыми из центров располагаемых на малой оси эллиптического контура кулачка радиусами , где «b» - длина малой полуоси эллипса кулачка, а «а» - длина большой полуоси эллипса кулачка. Достигается повышение технологичности изготовления. 2 ил.

Изобретение относится к области машиностроения, а более конкретно к зубчатым волновым передачам. Способ изготовления волновой передачи в герметичном и негерметичном ее исполнениях заключается в том, что предварительно деформируют гибкое звено с изменением его формы. В передачу вводят гибкую подкладную оболочку, конец гибкой оболочки и конец подкладной оболочки удлиняют сопряженными составными элементами, гибкую фиксируемую подкладную деформируют. Гибкое звено волновой передачи выполняют с глухим дном и выступающим наружу хвостовиком. Гибкое звено передачи сопрягают с дном посредством концентрично расположенных оболочек. Верхнюю опору входного вала выполняют из концентрично составленных оболочек, концы которых соединяют последовательно пластинами. Поясок с отверстиями на крайней внутренней оболочке фиксируют к крышке передачи. Пластину крайней наружной оболочки опоры прикрепляют к торцу пояска подкладной оболочки. Генератор принудительной деформации выполняют эллиптическим с гибкими подшипниками. Кулачки генераторов устанавливают на одиночном фланце. Достигается упрощение сборки. 2 н. и 3 з.п. ф-лы, 7 ил.

Изобретение относится к области машиностроения, а более конкретно к электромеханическому приводу. Устройство для получение вращательного движения содержит корпус, выходной вал, установленный в опорах, два гибких деформируемых колеса волновой передачи, два составных двухволновых пьезогенератора волн деформации, деформирующие гибкие зубчатые или фрикционные колеса и рычаги. Составные опоры одноплечих рычагов выполнены в осевом направлении двухрядными. Каждый одноплечий рычаг снабжен регулирующим устройством натяга между деформируемыми колесами и пьезопреобразователями, выполненным в виде системы из двух передач винт-гайка с резьбами разных направлений винтовых линий. На шейках концов каждого одноплечего рычага установлены сферические шарикоподшипники, перемещающиеся в проемах неподвижного основания и находящиеся в упругом контакте с деформируемыми колесами. Достигается снижение радиальных габаритов. 7 з.п. ф-лы, 17 ил.

Изобретение относится к волновым передачам. Волновая передача с двумя деформируемыми зубчатыми или фрикционными колесами включает корпус, крышку, соосные входной и выходной валы, два деформируемых зубчатых колеса, неподвижное и подвижное, каждое деформируемое гибкое зубчатое колесо снабжено по крайней мере одним генератором. Генераторы, внутренний и наружный, установлены на встречных направлениях деформации деформируемых зубчатых колес. В передачах с двумя и тремя волновыми зубчатыми зацеплениями, фрикционными контактами концы неподвижного деформируемого зубчатого колеса и конец подвижного деформируемого зубчатого колеса, переходящего в выходной вал, снабжены одной или несколькими концентрическими оболочками, торцы которых последовательно жестко соединены круглыми пластинами. Неподвижное деформируемое зубчатое колесо выполнено ортогонально ступенчатым с фланцем и хвостовиком, в который установлена съемная подшипниковая опора вала внутренних генераторов, снабженных второй подшипниковой опорой вала, выполненной в выходном валу передачи. Достигается уменьшение амплитуд вибрации звеньев, повышение их виброустойчивости и вибропрочности, повышение герметичности и ресурса передачи. 5 з.п. ф-лы, 10 ил.

Изобретение относится к области машиностроения и может быть использовано при изготовлении вакуумного технологического оборудования. Способ изготовления волновой герметичной передачи предусматривает следующие операции: гибкое герметичное звено, установочный фланец, дно, входное и выходное звенья деформируют предварительно с внешней стороны; установке гибкой негерметичной оболочки в герметичную оболочку предваряют установку втулки; при сборке/разборке используют сквозные резьбовые отверстия; подшипниковые опоры устанавливают на хвостовике герметичного звена и в корпусе; в резьбовые отверстия крышки и трубы ввинчивают винты. Кроме того, выходное, гибкое герметичное и входное звенья выполняют двухопорными. Гибкое герметичное звено расчленяют и выполняют составным из неподвижных, надетых одна в другую с относительной подвижностью тонкостенных оболочек, и наделяют их отдельными функциями. Достигается технологичность изготовления. 2 з.п. ф-лы, 8 ил.

Изобретение относится к машиностроению, а более конкретно к волновым герметичным передачам, и может быть использовано при изготовлении вакуумного технологического оборудования. Способ сборки волновой герметичной передачи включает предварительную деформацию гибкого герметичного колеса, введение гибкой подкладочной оболочки, фиксирование подкладочной оболочки между четырехроликовыми генераторами волн. Выходное, гибкое герметичное и входное звенья выполняют двухопорными, гибкое герметичное звено расчленяют и выполняют составным из неподвижных надетых одна в другую с относительной подвижностью тонкостенных оболочек. Достигается возможность автоматизации сборочного процесса. 2 н. и 5 з.п. ф-лы, 6 ил.

Изобретение относится к волновой герметичной передаче вакуумного технологического оборудования. Способ изготовления и сборки/разборки волновой герметичной передачи заключается в установке гибкого подшипника на гибкое герметичное звено недеформированным. При монтаже подшипник принудительно деформируют на эллиптическую форму профиля. Наружная герметичная ортогонально-ступенчатая или гладкая оболочка выполняет функцию обеспечения герметичности. Внутренняя негерметичная гладкая оболочка выполняет функцию передачи силовой нагрузки. Оболочки располагают концентрично и сопрягают с относительной подвижностью. Устройство для осуществления способа изготовления и сборки/разборки волновой герметичной передачи выполнено в виде трубы. Труба надета на кольцевой поясок внутренней негерметичной оболочки с относительной подвижностью и выполнена с одним зубчатым венцом. Жесткое зубчатое колесо выходного звена выполнено сдвоенным. Обеспечиваются меньшая амплитуда вибрации звеньев, повышение их вибропрочности и герметичности. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к вакуумному технологическому оборудованию. Волновая герметичная передача включает в себя соединенные герметично корпус и выполненные как одно целое установочный фланец, дно и входное и выходное звенья, гибкое герметичное звено, деформируемое внешним эллиптическим генератором волн принудительной деформации, выполненным в виде двухвершинного контура и установленного в контур гибкого подшипника, гибкое герметичное звено, двухволновое зубчатое зацепление, образованное венцами зацепляющихся колес. Выходное, гибкое герметичное и входное звенья выполнены двухопорными, гибкое герметичное звено расчленяют и выполняют составным из неподвижных, надетых одна на другую с относительной подвижностью свинченных тонкостенных оболочек, и наделяют их отдельными функциями. Гибкая герметичная оболочка выполняет функцию обеспечения герметичности, а внутренняя негерметичная гибкая оболочка выполняет функцию передачи силовой нагрузки. В изобретении описаны устройство и последовательность операций сборки/разборки герметичной волновой передачи и области ее применения. Обеспечивается уменьшение амплитуд вибрации звеньев, повышение их жесткости, виброустойчивости и вибропрочности, повышение герметичности и ресурса передачи. 5 з.п. ф-лы, 5 ил.

 


Наверх