Патенты автора Рудианов Геннадий Владимирович (RU)

Изобретение относится к области тренажеростроения и может быть использовано для подготовки оператора радиопеленгационного метеорологического комплекса (РПМК) приемам комплексного зондирования атмосферы (КЗА). Тренажер оператора радиопеленгационного метеорологического комплекса содержит панели управления БЩ6.01, БЩ6.02, видеомонитор, контрольный индикатор БЩ5.2, блок БЩ6.4, передающую и приемную системы; систему управления антенной; антенну с эквивалентом антенны и переключателем «Антенна-Эквивалент»; имитатор сигнала радиозонда (ИСРЗ) и ЭВМ. В тренажер также введены блок исходных данных инструктора и контроллер тренажера, управляющий режимами работы тренажера. В ЭВМ введена программа расчета траектории полета радиозонда на основании данных о ветре, вводимых в блок исходных данных инструктора. За счет введения данной программы возможно моделирование множества траекторий полета радиозонда, соответствующих реальным профилям ветра. Повышается уровень подготовки обучаемого. 2 ил.

Изобретение относится к области техники вооружения, в частности к стрельбе управляемыми реактивными снарядами по наземным объектам. Изобретение может быть использовано при проектировании систем телеориентации управляемых снарядов в луче лазера. Технический результат – повышение точности наведения реактивных снарядов на цель за счет обеспечения постоянства размера сечения луча наведения на текущей дальности управляемого снаряда. Система наведения содержит систему визирования цели и систему наведения, включающую в себя источник лазерного излучения, модулятор и оптическую систему с переменным фокусным расстоянием. При этом система содержит бортовой компьютер. В его память занесены функции изменения дальности снаряда во времени для каждого значения плотности наземного воздуха в диапазоне от 1,5 до 1,1 кг/м3 с шагом 0,1 кг/м3, а также измеренные за 30 мин до стрельбы данные метеоинформации - температуры и давления наземного воздуха. Бортовой компьютер обеспечен возможностью расчета плотности наземного воздуха на основании введенной метеоинформации, выбора из его памяти функции изменения дальности снаряда во времени, соответствующей рассчитанной плотности наземного воздуха, и формирования команды управления оптической системой. Оптическая система включает в себя усилитель, электромотор и редуктор для перемещения ее элементов в соответствии с выбранным законом изменения дальности снаряда. Кроме того, система наведения содержит алфавитно-цифровую клавиатуру для введения в компьютер значений температуры и давления наземного воздуха, контроллер и цифроаналоговый преобразователь. 3 ил.

Изобретение относится к измерительной технике и может быть использовано в системах учета характеристик атмосферы в интересах обеспечения стрельбы неуправляемыми снарядами. Технический результат – повышение точности стрельбы артиллерии в горных условиях при различных высотах метеокомплекса и огневой позиции. Для этого из электронной вычислительной машины метеокомплекса выводят бюллетень «Метеодействительный» и значение высоты позиции метеокомплекса, передают эту информацию в огневые подразделения, исправляют стандартные высоты бюллетеня «Метеодействительный» путем прибавления к ним значения высоты позиции метеокомплекса, выбирают из бюллетеня «Метеодействительный» значения направления и скорости действительного ветра на тех исправленных высотах, которые находятся в слое траектории снаряда, рассчитывают средние значения направления и скорости ветра в слое, в котором проходит траектория снаряда. Таким образом обеспечивают повышение точности метеоподготовки в горных условиях за счет использования ветровых характеристик только на тех высотах, которые составляют слой траектории снаряда. 2 ил., 2 табл.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях обнаружения и целеуказания, а также в радиолокационных станциях (РЛС) сопровождения для измерения истинного значения радиальной скорости цели. Достигаемый технический результат - однозначное измерение радиальной скорости воздушной цели в когерентно-импульсной РЛС. Указанный результат достигается на основе использования взаимной корреляционной функции (ВКФ) отраженного и опорного сигналов, при этом по числу максимумов во ВКФ устанавливают диапазон, в котором находится истинное значение доплеровской частоты отраженного сигнала, а затем определяют истинное значение радиальной скорости цели. Для проведения корреляционного анализа отраженных сигналов их сначала переводят в цифровую форму, а затем объединяют в единый синтезированный цифровой сигнал, длительность которого равна периоду повторения импульсов РЛС. После расчета ВКФ синтезированного сигнала ее огибающую пропускают через низкочастотный фильтр и подсчитывают число ее глобальных максимумов N. Это позволяет определить диапазон частот, в котором находится истинная доплеровская частота отраженного сигнала. Преимущество предлагаемого способа заключается в обеспечении возможности однозначного измерения радиальной скорости воздушной цели в когерентно-импульсной РЛС при частотах Доплера, превышающих значение частоты повторения зондирующих сверхвысокочастотных импульсов. 12 ил.

Изобретение относится к методам и средствам прицеливания и наводки, используемым в зенитных самоходных установках (ЗСУ) сухопутных войск. Способ применим в случае выхода из строя системы измерения дальности собственной радиолокационной системы, в т.ч. при постановке помех. С помощью оптического прицела на ЗСУ измеряются текущие угловые координаты воздушной цели. На подвижном пункте разведки и управления (ППРУ) методами радиолокации устанавливают линейную скорость и угол курса цели, которые передают по радиолинии на аппаратуру приема и реализации данных целеуказания. Существующие образцы этой аппаратуры устанавливают на ЗСУ. Измеренные на ЗСУ и переданные с ППРУ данные вводят в цифровую вычислительную систему, где наклонная дальность до цели рассчитывается по соответствующим формулам. Технический результат изобретения состоит в повышении точности определения наклонной дальности воздушной цели, что, в свою очередь, повышает точность стрельбы по ней. 4 ил.

Изобретение относится к вооружению и может быть использовано в системах распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций. Проводят экспериментальные стрельбы, исследуют записи отражения от снарядов для каждого калибра артиллерийских орудий противника, определяют частоты прецессии и нутации соответствующих снарядам орудий, заносят значения частот прецессии и нутации в качестве эталонных в запоминающее устройство (ЗУ) радиолокационной станции разведки огневых позиций (РСРОП), ведут разведку выпущенных снарядов с помощью РСРОП, обнаруживают и автоматически сопровождают снаряд, записывают в ЗУ РСРОП на определенном интервале времени параметров отраженных от снаряда сигналов на выходе предварительного усилителя промежуточной частоты в режиме отключенной мгновенной автоматической регулировки усиления, дополнительно проводят измерение линейной скорости снаряда на начальном участке траектории с помощью определения угловой координаты и наклонной дальности в двух последовательных моментах времени, преобразуют записанные параметры сигналов в цифровую форму, формируют спектр записанных отраженных сигналов, сравнивают выделенные значения частот прецессии и нутации с соответствующими значениями, хранящимися в базе данных ЗУ РСРОП, выявляют минимальные ошибки расхождения решения о калибре сопровождаемого снаряда, определяют калибр сопровождаемого снаряда. Изобретение позволяет повысить эффективность распознавания снаряда. 5 ил.

 


Наверх