Патенты автора Шувалов Андрей Александрович (RU)

Способ изготовления зонных пластин, в котором формируют блок из стеклянных пластин двух сортов, имеющих различную плотность и диэлектрическую проницаемость, но одинаковую площадь и объем, располагая пластины первого и второго сорта поочередно. С обеих сторон блока находятся пакеты пластин из слоев стекла первого сорта. Блок размещают внутри контейнера, который устанавливают в формовочный узел внутри теплового узла, обеспечивающего нагрев блока пластин распределенным температурным полем, что приводит к последовательному выдавливанию расплава стекла нижних слоев через фильеру формовочного узла. Осуществляют оттяжку полученной «луковицы» посредством тянущего механизма и вытяжку для получения кольцевой заготовки, которую перетягивают в подобии для достижения требуемых геометрических размеров последней зоны. Перетянутую заготовку режут на отдельные пластины и подвергают механической обработке. Технический результат - обеспечение изготовления зонных пластин, которые формируют монохроматические и полихроматические рентгеновские пучки в очень широком диапазоне энергий и сохраняют свойства под действием мощных пучков синхротронного излучения. 3 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам непрерывного изготовления из необработанной сырьевой заготовки блока стекла трубок, стержней, жёстких световодов, различных деталей для радио- и телеаппаратуры, электронной техники и приборостроения. Техническим результатом является повышение качества исполнения геометрических параметров изделия за счет использования системы стабилизации давления размягченной массы стекла на входе в фильеру, а также расширение ассортимента изделий и снижение брака в изготовлении при одновременном снижении расхода сырья и электроэнергии. Предложено устройство для непрерывного изготовления изделий из необработанного блока-заготовки из аморфного материала – стекла, кварца, ситалла. Устройство включает корпус нагревательной камеры с теплоизоляцией и крышкой с системой охлаждения, на которой расположен дозатор компенсационного груза, устройство коррекции, расположенное внутри нагревательной камеры, и систему нагрева. В нижней части нагревательной камеры расположены фильерный питатель с фильерой и электрические нагревательные элементы. При этом устройство коррекции состоит из ёмкости для компенсационного груза, соединенной с противовесом тросом, проходящем через отверстие в крышке и крутящиеся блоки, установленные снаружи крышки и корпуса нагревательной камеры. Причем ёмкость выполнена с возможностью установки на блок-заготовку посредством шести керамических стержней с фиксаторами и корректировки пространственного положения блока-заготовки внутри камеры для поддержания заданного давления на размягчённую массу при входе в фильеру в процессе изготовления изделий. Система нагрева состоит из коммутационного устройства, соединенного с нагревательными элементами, датчиком температуры, расположенным в корпусе нагревательной камеры над нагревательными элементами, дозатором компенсационного груза и устройством взвешивания, расположенным под фильерой. Причем добавленный груз равен весу изделий, изготовленных за соответствующий временной интервал. 1 ил.

Изобретение относится к биотехнологии, а именно к способу детектирования антител. Способ детекции антител в биоматериале с использованием стеклянных микроструктурных волноводов включает получение оптического иммуносенсора путем введения реакционной смеси анализируемого образца с антигеном в полую сердцевину стеклянного микроструктурного волновода с последующим определением антител по положению локальных максимумов спектра пропускания образца, в режиме реального времени, до и после заполнения смесью антигена и анализируемого раствора, содержащего искомые антитела к данному антигену. Техническим результатом является возможность определять наличие антител в биологическом материале с высокой точностью в режиме реального времени. 7 ил., 1 табл., 2 пр.

Использование: для определения абсолютного квантового выхода люминесценции. Сущность изобретения заключается в том, что устройство для определения абсолютного квантового выхода люминесценции исследуемого вещества содержит расположенные на одной оптической оси источник света, фотометрический элемент и систему регистрации, при этом устройство дополнительно содержит отрезок одномодового оптического волновода, расположенного между источником света и фотометрическим элементом, а фотометрический элемент выполнен в виде отрезка микроструктурного оптического волокна с полостью для исследуемого вещества, при этом фотонная разрешённая зона волокна совпадает с положением спектральных полос люминесценции исследуемого вещества и источника света. Технический результат: упрощение и улучшение качества процедуры проведения определения абсолютного квантового выхода люминесценции. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области микро- и нанотехнологий и может быть использовано для получения образцов фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС). Способ запайки торцевой поверхности образца включает нагрев образца узконаправленным источником теплового воздействия. При этом в качестве образца выбирают фотонно-кристаллический волновод с полой сердцевиной, осуществляют вращение узконаправленного источника теплового воздействия вокруг оси волновода с угловой скоростью от 1 до 500 об-1, образец нагревают до температуры, не более чем на 80°С превышающей температуру начала размягчения материала образца, нагрев осуществляют в течение не более 4 секунд, после чего образец охлаждают направленным газовым потоком. Технический результат - повышение процента выхода ФКВ с ПС с однородно селективно запаянными внешними оболочками, а также обеспечение максимальной однородности свойств и устойчивость полученных образцов при их дальнейшей эксплуатации. 1 ил.

Изобретение относится к области металлургии, а именно к жаропрочным никелевым сплавам для получения изделий, производимых методом металлургии гранул и предназначенных для работы при высоких нагрузках и температурах, например в газотурбинных двигателях. Сплав содержит, мас. %: углерод - 0,03-0,08, хром - 9,0-11,0, кобальт - 14,0-16,0, вольфрам - 5,5-6,5, молибден - 3,2-3,8, титан - 3,8-4,2, алюминий - 3,4-4,2, ниобий - 1,5-2,2, гафний - 0,2-0,4, бор - 0,005-0,055, цирконий - 0,001-0,055, магний - 0,01-0,06, церий - 0,001-0,055, никель - остальное. Сплав имеет размер зерна 35-40 мкм, а также характеризуется высокими характеристиками длительной и кратковременной прочности во всем диапазоне рабочих температур, пластичности при горячей и холодной обработке. Повышается надежность срока службы изделий из заявленного сплава. 2 табл.

Изобретение относится к волоконной оптике. Фотонно-кристаллическое халькогенидное волокно состоит из центрального волноведущего стержня из халькогенидного стекла, микроструктурной волноведущей оболочки из чередующихся слоев халькогенидного стекла и воздушных зазоров и второй защитной микроструктурной оболочки из многокомпонентного стекла. Способ его изготовления включает предварительную вытяжку стержней. Далее формируют халькогенидную вставку путем укладки стержней из халькогенидного стекла с соответствующими воздушными зазорами, а затем укладывают внешние поддерживающие тонкостенные капилляры из многокомпонентного стекла в толстостенную трубку из многокомпонентного стекла. Технический результат - обеспечение высокой нелинейности. 2 н. и 3 з.п. ф-лы, 2 ил.

 


Наверх