Патенты автора Балалаев Анатолий Николаевич (RU)

Изобретение относится к области измерительной техники и может быть использовано для исследования теплофизических характеристик теплоизоляционных материалов с большой величиной удельного теплового сопротивления, преимущественно вакуумных теплоизоляционных изделий. Для измерения удельного теплового сопротивления тепловой поток формируют и разделяют на два потока, один из которых пропускают последовательно через первый эталонный объект с малой величиной удельного теплового сопротивления и исследуемый объект, а другой поток пропускают через второй эталонный объект с малой величиной удельного теплового сопротивления, определяют интервалы времени, в течение которых температура первого и второго эталонных объектов повышается на определенные заданные величины, по средней разности интервалов времени, деленных на соответствующую величину повышения температуры первого и второго эталонных объектов, определяют величину удельного теплового сопротивления исследуемого объекта из графика зависимости между этими величинами, который получают предварительно путем замены исследуемого объекта на варианты третьего эталонного объекта с различной известной величиной удельного теплового сопротивления, одинаковыми с исследуемым объектом геометрическими размерами и близкими значениями температуропроводности. Достигается уменьшение среднеквадратической погрешности измерения удельного теплового сопротивления до 6%. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области измерительной техники и может быть использовано для исследования теплофизических характеристик теплоизоляционных материалов с большой величиной удельного теплового сопротивления, преимущественно вакуумных теплоизоляционных изделий. В изобретении тепловой поток разделяют на два потока, один из которых пропускают последовательно через первый эталонный объект с большой величиной удельного теплового сопротивления, и исследуемый объект, а другой поток пропускают последовательно через второй эталонный объект с большой величиной удельного теплового сопротивления и третий эталонный объект с малой величиной удельного теплового сопротивления, определяют интервалы времени, в течение которых температура первого и второго эталонных объектов повышается на заданную величину, по разности этих интервалов времени определяют величину отношения удельного теплового сопротивления исследуемого объекта к удельному тепловому сопротивлению третьего эталонного объекта из графика зависимости между этими величинами, который получают предварительно путем замены исследуемого объекта на варианты четвертого эталонного объекта с различной величиной удельного теплового сопротивления и одинаковой с исследуемым объектом теплоемкостью. Технический результат - уменьшение времени проведения эксперимента над исследуемым объектом с очень большой величиной удельного теплового сопротивления с нескольких часов до 10 минут. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области измерительной техники и может быть использовано для исследования теплофизических характеристик теплоизоляционных материалов с большой внутренней неоднородностью, преимущественно вакуумных теплоизоляционных изделий. В изобретении тепловой поток формируют источником тепловыделения. Первую часть теплового потока пропускают сначала через первый эталонный объект с высокой теплопроводностью, а затем через исследуемый объект. Измеряют зависимость температуры первого эталонного объекта от времени. Пропускают вторую часть теплового потока сначала через второй эталонный объект с высокой теплопроводностью, а затем через термостойкий материал. Измеряют зависимость температуры второго эталонного объекта от времени. Определяют температуру окружающей среды и интервалы времени, в течение которых температура первого и второго эталонных объектов повышается на заданную величину при семи различных уровнях начальных температур первого и второго эталонных объектов. Подставляют величины разностей интервалов времени, в течение которых температура первого и второго эталонных объектов повышается на заданную величину, и величину температуры окружающей среды в уравнения, имеющие обобщенный вид: где i=1, 2, 3, 4, 5, 6, 7, а затем решают систему из семи уравнений с помощью вычислительного устройства относительно семи неизвестных величин αh1, αh2, α1, α2, χ, W и Ru, последняя из которых представляет собой удельное тепловое сопротивление исследуемого объекта. Технический результат - повышение точности измерения удельного теплового сопротивления исследуемого объекта. 2 н.п. ф-лы, 1 ил.

Изобретения относятся к теплоизоляционным изделиям и могут быть использованы в качестве теплоизоляции вагонов, изотермических контейнеров, холодильников и другого оборудования. В вакуумном теплоизоляционном изделии, состоящем из вакуумированного плоского корпуса с верхней (1) и нижней (2) стенками и промежуточными опорными элементами (5). Верхняя, нижняя и боковые стенки выполнены единым целым, а их торцевые поверхности герметично соединены с торцевыми стенками. На внутренних поверхностях верхней и нижней стенок выполнены в одном варианте ребра жесткости, а в другом варианте - пазы для размещения промежуточных опорных элементов (5). Промежуточные опорные элементы соединены между собой перемычками, с обеих сторон которых закреплены радиационные экраны. Ребра жесткости могут быть перпендикулярны верхней и нижней стенкам. Соседние ребра жесткости верхней стенки корпуса могут быть попарно наклонены друг к другу под углом φ от 20 до 70 градусов между ребрами и верхней стенкой корпуса. Изобретение повышает прочность и эксплуатационную надежность изделия, за счет увеличения устойчивости промежуточных опорных элементов. 2 н. и 3 з.п. ф-лы, 9 ил.

Способ предназначен для изготовления теплоизоляционных изделий. Способ заключается в изготовлении методом экструдирования наружной оболочки с внутренними ребрами жесткости продольной вставки, приварке к наружной оболочке торцевых стенок и вакуумировании внутренней полости наружной оболочки, дополнительно производят экструдирование нагретого полимерного материала, обладающего большой жесткостью и малой теплопроводностью, через матрицу, которая повторяет профиль поперечного сечения продольной вставки на длину, меньшую длины наружной оболочки изделия на величину не менее удвоенного расстояния между его ребрами жесткости, из продольной вставки производят вырубку окон и вводят ее с гарантированными зазорами между ребрами жесткости во внутрь наружной оболочки с заглублением относительно его торцевой поверхности на величину не менее расстояния между ребрами жесткости, соединяют диффузионной сваркой трением торцевые поверхности наружной оболочки и торцевые стенки, стенку наружной оболочки охлаждают на расстоянии от сварного шва не менее расстояния между ребрами жесткости, в любой из стенок наружной оболочки или в торцевых стенках выполняют отверстие, через которое вакуумируют внутреннюю полость наружной оболочки до величины остаточного вакуума меньше 2 кПа, и затем под вакуумом его герметизируют диффузионной сваркой трением. Технический результат - повышение надежности. 3 ил.

 


Наверх