Патенты автора Саркисов Сергей Владимирович (RU)

Изобретение относится к области приборостроения и может быть использовано для оперативных регистрации и контроля технического состояния и функционирования автомобилей, а также психофизиологического состояния водителей при расследовании дорожно-транспортных происшествий. Устройство контроля параметров движения транспортного средства содержит аппаратуру, размещенную на транспортном средстве, и аппаратуру, расположенную на пункте приема и контроля. Аппаратура, размещенная на транспортном средстве, содержит аппарат 1 магнитной записи, первый 2, второй 3 и третий 4 приводы механизма транспортировки носителя 5 магнитной записи, универсальную магнитную голову 6, стирающую магнитную голову 7, генератор 8 стирания, блок 9 управления, реле 10 времени, колесо 11 транспортного средства, первый 12 и второй 13 переключатели, блок 14 воспроизведения, первый 15 и второй 22 распределительные блоки, датчик 16 меток, источник 17 сигналов записи, датчик состояния тормозной системы 18, приборов сигнализации 19, фар 20, усилия сжатия водителем рулевого колеса 21, задающий генератор 23, фазовый манипулятор 2, частотный манипулятор 25, амплитудный модулятор 26, усилитель 27 мощности и передающую антенну 28. Аппаратура, размещенная на пункте приема и контроля, содержит приемную антенну 29, усилитель 30 высокой частоты, амплитудный ограничитель 31, синхронный детектор 32, первый 33, второй 42 и третий 47 блоки регистрации, удвоитель 34 фазы, первый 35, второй 36 и третий 37 блоки ФАПЧ, первый 38, второй 39 и третий 40 делители фазы на два, частотный демодулятор 41, первый 42, второй 44, третий 46 и четвертый 49 фазовые детекторы, опорный генератор 48, формирователь 50 управляющего сигнала, гетеродин 51, смеситель 52 и усилитель 53 промежуточной частоты. Технический результат – повышение чувствительности и дальности действия пункта приема и контроля путем построения его по супергетерадинной схеме. 5 ил.

Изобретение относится к области строительства, а именно к сборно-разборным основаниям для быстрой установки и разборки фундаментов стационарных и временных зданий в удаленных труднодоступных районах, в том числе с экстремальным климатом. Мобильный быстросборный фундаментный блок выполнен в виде базы-решетки из нескольких параллельно расположенных рядов основных труб большого диаметра, соединенных между собой через выполненные в них отверстия поперечно расположенными трубами меньшего диаметра. Основные трубы снабжены отверстиями в верхней их части, в которых вертикально размещены композитные трубы-сваи малого диаметра, при этом указанные отверстия в верхней части основных труб выполнены с возможностью заполнения основных труб бетоном или инертным материалом для фиксации базы-решетки на месте установки. Технический результат состоит в обеспечении уменьшения времени и снижения трудоемкости процесса возведения фундамента, обеспечении возможности последующей разборки и перемещения конструкции. 2 ил.

Изобретение относится к криогенным топливным бакам и может быть использовано в качестве системы локального хранения СПГ на легковых автомобилях, большегрузном транспорте и других средствах перемещения. Криогенный топливный бак для перевозки сжиженного природного газа на автотранспорте включает герметичную мембрану, помещенную внутрь промежуточной оболочки, закрепленную к ней четырьмя парами пневматических амортизаторов. Амортизаторы соединяются с внутренней стенкой промежуточной оболочки неподвижными опорами, с герметичной мембраной – шарнирными соединениями. Бак содержит слой экранно-вакуумной тепловой изоляции, расположенный в полости между промежуточной оболочкой и наружной защитной оболочкой, соединенный посредством тепловых мостов цилиндрического типа. Заправочный трубопровод содержит перфорированную трубку с многочисленными отверстиями, гибкую часть в виде металлорукава, обратный клапан, запорно-регулировочный вентиль, пневмоприводную и заправочную горловину. Система компенсации температурного расширения жидкой фазы топлива состоит из бака-компенсатора поплавкового типа с соединительной трубкой, соединяющей верхнюю часть компенсатора и пространство герметичной мембраны, сливной трубки с обратным клапаном. Система поддержания стабильного неподвижного положения зеркала СПГ включает блок управления, соединенный системой связи с датчиком положения емкости, соединенный системой связи с компрессором, нагнетающим воздух в пневматические амортизаторы по трубопроводам через обратный клапан, распределительный коллектор и автоматические клапаны. Техническим результатом является обеспечение длительного периода бездренажного хранения криогенного топлива в бортовой емкости, устанавливаемой на автотранспортном средстве, путем регулирования положения криогенной емкости для поддержания стабильного положения сжиженного газа, недопущения повышения избыточного давления и температурного расслоения, что позволит повысить энергетическую эффективность топливной установки, увеличив ее экономические и экологические показатели. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области производства строительных материалов, а именно к производству теплоизоляционных материалов. Способ изготовления теплоизоляционного материала с применением переработанных твердых бытовых отходов состоит в том, что силикат-глыбу измельчают до удельной поверхности 2500 см2/г, смешивают ее с модификатором – суперпластификатором С-3, упрочняющей добавкой в виде портландцемента, дополнительной упрочняющей добавкой – переработанными твердыми бытовыми отходами – раздробленными отработанными шинами, полученными по технологии пиролиза, температура которого составляет 450-650°С при ограниченном доступе кислорода, на мусороперерабатывающих заводах, вспенивающим агентом в виде перекиси водорода и водой затворения, заливают смесь в форму и далее проводят тепловую обработку смеси токами СВЧ в течение 15 минут при температуре 300°С, при следующем соотношении компонентов смеси, мас.%: силикат-глыба 62,188-64, суперпластификатор С-3 0,01-0,012, портландцемент 10-12, раздробленные отработанные шины 0,04-0,1, перекись водорода 0,5-0,7, вода затворения 25. Технический результат – увеличение экологической безопасности и сохранение природных ресурсов при производстве теплоизоляционного материала, с сохранением его физико-механических свойств. 1 табл.

Изобретение относится к области двигателестроения, в частности к системам питания сжиженным газом двигателя внутреннего сгорания. Технический результат - повышение коэффициента полезного действия силовой установки, улучшение его экологических и экономических показателей. Предложена система питания двигателя внутреннего сгорания сжиженным природным газом (СПГ), включающая в себя криогенный бак СПГ 1 с блоком запорно-контрольной арматуры 2 с обратным клапаном, содержащим вентили 4, 5 сжиженной фазы и вентиль 6 паровой фазы газа, закрытые газонепроницаемым кожухом с трубками для вывода газа, выносную заправочную горловину 7, электромагнитный газовый клапан сжиженной фазы, устройство контроля давления 10, газовый предохранительный клапан 8. Дополнительно введены бак компримированного природного газа (КПГ) 17, фильтр очистки газа 18, две топливные рампы подачи СПГ 11 и КПГ 20, выпускной коллектор 13 паровой фазы, турбодетандер 14, компрессор 16, магистраль подачи паровой фазы газа из топливной рампы 11 подачи СПГ в бак КПГ 17. 2 з.п. ф-лы, 1 ил.

Изобретение относится к двигателестроению, в частности к системам питания двигателей внутреннего сгорания (ДВС), использующим в качестве топлива сжиженный природный газ (СПГ). Изобретение позволяет обеспечить принудительное поступление воздуха в цилиндры двигателя путем установки системы наддува с применением турбо- и электрокомпрессора, что позволит увеличить эффективность работы силовой установки. Предложена система питания двигателя внутреннего сгорания с наддувом на сжиженном природном газе, включающая в себя криогенный бак СПГ 1 с герметичным газонепроницаемым кожухом 2, запорно-регулировочным вентилем 7 жидкой фазы, запорно-регулировочным вентилем 12 паровой фазы и заправочным вентилем 3 сжиженной фазы, соединенным с заправочной горловиной 4, систему сброса СПГ, включающую предохранительные клапаны 17 и клапан 18 аварийного сброса, бак 13 компримированного (сжатого) природного газа (КПГ), фильтр очистки газа 52, две топливные рампы подачи СПГ 8 и КПГ 51, выпускной коллектор 45 паровой фазы, турбодетандер 46 с аккумулятором 47, компрессор 15, магистраль подачи паровой фазы газа из топливной рампы 8 подачи СПГ в бак КПГ 13. Система принудительного питания камер сгорания (КС) воздухом включает воздушные фильтры 28, 41 низкого сопротивления, турбокомпрессор 29-31, коллектор 34 впуска и коллектор 37 отработавших газов (ОГ), дроссельный клапан 33, датчик вращения 44, управляющее устройство 43, соединенное с электрокомпрессором 39. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области теплотехники и может быть использовано в автоматизации управления системами отопления. Технический результат - повышение энергетической эффективности и надежности водяной системы отопления. Состоит из подающей (1) и обратной труб (2), трубы впуска (сброса) воздуха (3), труб слива воды (4), (20) и комплекса отопительных приборов (5), гидравлически соединенных между собой. На подающей трубе (1) установлен электровентиль (6) и датчик расхода воды (7), на обратной трубе (2) установлен электровентиль (7) и датчик расхода воды (9), на трубе впуска (сброса) воздуха (3) установлен электровентиль (11), а на трубах слива воды (4) и (20) соответственно установлено по одному электровентилю (10) и (19). Под трубами слива воды (4) и (20) расположена теплоизолированная емкость (12), нижняя часть которой через электронасос (13) и электровентиль (14) гидравлически соединена с системой отопления. Также система содержит электронный блок управления (15), вход которого соединен с датчиками расхода воды (8) и (9), а выход - с трехходовыми электровентилями (6) и (7), а также электровентилями (10), (11) и (14), электронасосом (13) и оповещателем (16). Вторые выходы трехходовых электровентилей (6) и (7) соединены трубами с теплообменником (17), установленным в нижней части теплоизолированной емкости (12), имеющей переливной трубопровод (18). В качестве привода электровентилей (10), (11), (14), (19) и трехходовых электровентилей (6) и (7) в водяной системе отопления могут быть использованы электродвигатели. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области теплотехники и может быть использовано в автоматизации управления системами отопления. Водяная система отопления состоит из подающей (горячей) (1) и обратной (охлажденной) (2) труб теплосети и подключенных к ним через водяные трехходовые электровентили (3) и (4) соответственно подающий (5) и обратный (6) стояки с отопительными приборами (7), гидравлически связанными между собой, автоматического воздухоотводчика (8), расположенного в верхней части подающего стояка (5), электронасоса (9), трубы слива воды (10), электронный блок управления (11) с датчиками разгерметизации (12) в виде датчиков обнаружения воды и оповещателем (13). Электронный блок управления (11) с датчиками разгерметизации (12) соединен при помощи линий (14). Для управления трехходовыми электровентилями (3) и (4), электронасосом (9) и оповещателем (13) от электронного блока управления (11) отходят соответственно линии управления (15), (16) и (17). Входы трехходовых электровентилей (3) и (4) соответственно подключены подающей (1) и обратной (2) трубам теплосети. Первые выходы трехходовых электровентилей (3) и (4) подсоединены соответственно к подающей (1) и обратной (2) трубам, а вторые выходы трехходовых электровентилей (3) и (4) соединены трубами между собой и со входом электронасоса (9), выход которого через трубу слива (10) подсоединен к канализационному трубопроводу. Дополнительно оборудована баллоном сжатого воздуха (17), который последовательно через газовый запорный электровентиль (18) высокого давления, воздушный редуктор (19) и газовый запорный электровентиль (20) трубопроводом подсоединен к, по крайней мере, к одному подающему стояку (5) выше уровня установки водяного трехходового электровентиля (3) подающей трубы (1) теплосети, при этом, по крайней мере, на одном подающем стояке (5) перед его автоматическим воздухоотводчиком установлен газовый запорный электровентиль (21), а электронный блок управления (11) дополнительно связан линиями управления (22) с газовым запорным электровентилем (18) высокого давления и запорными газовыми электровентилями (20) и (21), установленными соответственно после газового редуктора (19) и перед автоматическим воздухоотводчиком (8). В качестве привода всех электровентилей (18), (19), (21), а также трехходовых (3) и (4) электровентилей могут быть использованы электродвигатели. Технический результат - повышение надежности путем более полного гарантированного опорожнения стояков и отопительных приборов от воды при их разгерметизации. 2 з.п. ф-лы, 2 ил.

Изобретение относится к отоплению и вентиляции жилых и общественных помещений и предназначено для создания комфортных условий в помещениях. Оно может быть использовано при проектировании, строительстве и реконструкции жилых и общественных зданий. Требуемый технический результат, заключающийся в энергосберегающем способе естественной приточной вентиляции, при этом обеспечивающем нормируемый объем и подогрев поступающего в помещение наружного воздуха без применения дополнительных нагревательных устройств, исполнительных электромеханизмов и регулирующих манипуляций пользователя, достигается тем, что наружный воздух поступает через воздухозаборное отверстие приточного устройства, затем смешивается с теплым внутренним воздухом помещения посредством переточных отверстий и каналов и далее перетекает в пространство конвектора, где, смешиваясь с воздухом, поднимающимся от теплообменника конвектора, нагревается и поступает в помещение. 2 ил.

Изобретение относится к области производства строительных материалов, а именно к производству конструкционно-теплоизоляционных материалов. Способ изготовления конструкционно-теплоизоляционного материала с применением продуктов переработки твердых коммунальных отходов состоит в том, что силикат-глыбу измельчают до удельной поверхности 2500 см2/г, смешивают ее с модификатором – суперпластификатором С-3, упрочняющей добавкой в виде портландцемента, дополнительной упрочняющей добавкой – продуктами переработки твердых коммунальных отходов (ТКО) – гранулированным пластиком ТКО, полученными по технологии рециклинга на мусороперерабатывающих заводах, вспенивающим агентом в виде перекиси водорода и водой затворения, заливают смесь в форму и далее проводят тепловую обработку смеси токами СВЧ в течение 15 минут при температуре 300°С при следующем соотношении компонентов смеси, мас.%: указанная силикат-глыба 62,188–64, суперпластификатор С-3 0,01–0,012, портландцемент 10–12, гранулированный пластик ТКО 0,04–0,1, перекись водорода 0,5–0,7, вода затворения 25. Технический результат – увеличение экологической безопасности и сохранение природных ресурсов при производстве конструкционно-теплоизоляционного материала с сохранением его физико-механических свойств. 1 табл.

Изобретение относится к области теплоэнергетики и может быть использовано в качестве энергохолодильной системы для объектов, функционирующих без связи с атмосферой, например для специальных фортификационных сооружений. Энергохолодильная система снабжена линией подачи воды с циркуляционным насосом из хранилища чистой холодной технической воды, разделяющейся после циркуляционного насоса на два трубопровода, один из которых - трубопровод, идущий на охлаждение холодильной машины, другой - трубопровод, идущий в промежуточную емкость. Хранилища чистой холодной технической воды и нагретой технической воды выполнены в виде отдельных теплоизолированных железобетонных резервуаров. Выход из холодильной машины соединен с промежуточной емкостью. Система снабжена линией подачи технической воды из промежуточной емкости в двигатель автономной электростанции, контактным теплообменником для очистки отработанных газов двигателя автономной электростанции нагретой технической водой, линией подачи нагретой технической воды от двигателя автономной электростанции в контактный теплообменник, а также линией подачи очищенных отработанных газов из контактного теплообменника в линию подачи окислителя в двигатель автономной электростанции. Достигаемый технический результат - повышение качества очистки отработанных газов двигателя автономной электростанции для их повторного использования в качестве дополнительного компонента к окислителю. 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано в качестве энергохолодильной системы для объектов, функционирующих без связи с атмосферой, например для специальных фортификационных сооружений (СФС). Энергохолодильная система содержит автономную электростанцию, включающую в себя двигатель и электрогенератор, холодильную машину, емкость с горючим, емкость с окислителем, хранилище холодной технической воды, хранилище нагретой технической воды. Система снабжена смесевой емкостью для хранения утепленной воды, емкостью для хранения сухого нейтрализующего вещества, соединенной с емкостью-дозатором для приготовления водного нейтрализующего раствора, контактным теплообменником для очистки отработанных газов двигателя, линией слива химически грязного водного нейтрализующего раствора с циркуляционным насосом из контактного теплообменника в хранилище химически грязного водного нейтрализующего раствора, в качестве которого используется хранилище нагретой технической воды, а также линией подачи очищенных отработанных газов из контактного теплообменника в линию подачи окислителя в двигатель автономной электростанции. Достигаемый технический результат - снижение расхода технической воды для охлаждения двигателя автономной электростанции, а также увеличениие срока режима полной изоляции СФС. 2 з.п. ф-лы, 1 ил.

Относится к области котлостроения и предназначен для сжигания твердого топлива - угля и дробленных твердых коммунальных отходов в кипящем слое. Котлоагрегат для сжигания угля и дробленных твердых коммунальных отходов в кипящем слое состоит из механического топочного устройства в виде наклонной к горизонту подвижной колосниковой решетки с подачей воздуха под решетку и в надслоевое пространство, поверхностей нагрева в виде газоплотных экранов, обеспечивающих разворот газов для организации системы возврата уноса, эжектора, воздуховода в зоне первичного дутья под решеткой изогнутого до вертикального положения, воздуховода в зонах вторичного дутья, выполненного в виде щелевых сопел, линии всасывания дутьевого вентилятора котла, соединенной с напорной линией дымососа, для подмешивания уходящих газов, бункера для угольной смеси, расположенного над шнековым питателем. Питатель выполнен удлиненным и над его удлиненной частью по ходу подачи топлива за бункером для угольной смеси установлен дополнительный бункер для дробленных твердых коммунальных отходов, при этом под шнеком питателя в районе бункера для угля нижняя полуокружность желоба шнекового питателя выполнена с продольными щелевыми отверстиями и оборудована конусным поддоном, нижняя часть которого наклонным нисходящим трубопроводом подведена к пневматическому забрасывателю в топку котлоагрегата, а в боковой обмуровке котла навстречу друг другу установлены два горелочных устройства. Технический результат - возможность сжигания в котлоагрегате малой мощности с кипящим слоем угля с дробленной сортированной смесью частиц твердых коммунальных отходов, а также повышение эффективности сжигания угля как самостоятельно, так и вместе с отходами. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к криогенным топливным бакам и может быть использовано в качестве системы локального хранения СПГ на легковых автомобилях, большегрузном транспорте и других средствах перемещения, а также малых генераторных установках. Малолитражная криогенная цистерна транспортного средства, работающего на сжиженном природном газе (СПГ), состоит из внешнего кожуха и внутреннего сосуда в виде сильфонного осевого компенсатора, закрепленного к внешней емкости неподвижной опорой, имеющего в межстенном пространстве слой экранно-вакуумной тепловой изоляции. Содержит аустенитную никелированную стальную внутреннюю и стальную нержавеющую наружную стенки, а также мембрану, соединенную конусными тепловыми мостами. Содержит компенсационный бачок с соединительной трубкой, ультразвуковой измеритель, расположенный в верхней части емкости сильфона; трубопровод заправки, содержащий заправочную горловину, запорно-регулировочный вентиль, обратный клапан, устройство ввода СПГ. Также содержит трубопровод дренажа-наддува с испарителем наддува, запорным вентилем и регулятором давления, трубопровод выдачи топлива, на котором расположены запорный вентиль, скоростной клапан и испаритель-теплообменник. Электродвигатель с системой сжатия-растяжения компенсатора, включающий поршень, зацепление с электромагнитной муфтой, шток, передаточный механизм, зажатый в роторе вал; подающий и обратный газовые трубопроводы, поддерживающие атмосферное давление в пространстве между внутренней и внешней емкостями, запорно-регулировочной и предохранительной арматуры. При этом внутренний сосуд выполнен в виде сильфонной конструкции, предназначен для принудительного изменения объема путем сдвига упругой гофрированной металлической оболочки. Техническим результатом является увеличение периода удержания жидкого метана в криогенном топливном баке без осуществления дренажа в атмосферу, что позволит повысить экономические и экологические показатели, решит проблему малого времени бездренажного хранения СПГ. 1 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в мотопомпах с бензиновым двигателем. Мотопомпа пожарная - войсковая состоит из центробежного пожарного насоса, несущей рамы двигателя внутреннего сгорания в сборе, топливного бака, напорного патрубка с напорной задвижкой, блока управления двигателем, защитного капота и ручного вакуумного насоса. Шасси выполнено съемным и состоит из ручки (1), соединительной штанги (2), колесной оси (3), двух колес (4) и фиксирующего элемента (6). Ручка (1) представляет собой металлическую трубу, позволяющую держать ее двумя руками. Колесная ось (3) соединена с соединительной штангой (2). На несущей раме смонтированы пазы для крепления съемного шасси и складная штанга с фонарем для освещения рабочей зоны. На раме уже максимальной ширины мотопомпы спереди и сзади смонтированы складывающиеся ручки для переноски. Технический результат заключается в повышении безопасности транспортировки мотопомпы и в повышении скорости проноса мотопомпы в узких дверных проемах. 3 ил.

Изобретение относится к области водоотведения. Устройство содержит кольца перекрытия, подвижную ферму илоскреба. Кольца перекрытия выполнены из сегментов, имеющих трапециевидную или прямоугольную форму. Сегменты колец перекрытия жестко закреплены между собой. Сегменты колец перекрытия выполнены из материалов, имеющих положительную плавучесть. Кольца перекрытия выполнены свободно плавающими на поверхности зеркала воды. Кольца перекрытия выполнены с возможностью концентричного вращения вокруг центральной оси отстойника. Кольца перекрытия выполнены с возможностью свободного вращения илоскреба, имеющего систему скребков и треугольную ферму. Сегменты колец перекрытия снабжены отбойной юбкой, агломерационными тонкослойными модулями, имеющими отрицательную плавучесть. Отбойная юбка расположена на внешнем и внутреннем периметре сегментов колец перекрытия. Количество колец перекрытия соответствует количеству зазоров между конструктивными элементами подвижной фермы илоскреба. Агломерационные тонкослойные модули присоединены к сегментам колец перекрытия жесткими подвесами. Обеспечивается повышение эффективности и надежности биологической очистки сточных вод. 4 ил.

Изобретение относится к области систем водоотведения. Система содержит блок транспортировки сточных вод, содержащий коллектор, сеть водоотведения, переливной трубопровод. Переливной трубопровод выполнен в виде участка сети. Система дополнительно снабжена регулирующим трубопроводом, компенсационным трубопроводом, механической решеткой с механизмом очистки механической решетки, электроприводом механизма очистки механической решетки, как минимум двумя датчиками уровня, входным и выходным колодцами, блоком управления механизмом очистки механической решетки, приемным резервуаром насосной станции канализационных очистных сооружений. Сеть водоотведения и/или коллектор соединены во входном колодце с компенсационным трубопроводом диаметром Dк. Компенсационный трубопровод соединен с регулирующим трубопроводом диаметром Dp в выходном колодце, Dк≥Dр. Выходной колодец и приемный резервуар насосной станции канализационных очистных сооружений соединены регулирующим и переливным трубопроводом. Лоток переливного трубопровода расположен выше шелыги регулирующего трубопровода. Механическая решетка с механизмом очистки расположена в выходном колодце. Датчики уровня расположены в выходном колодце до и после механической решетки. Выходы датчиков уровня соединены со входом блока управления механизмом очистки механической решетки. Выход блока управления механизмом очистки механической решетки соединен с электроприводом механизма очистки механической решетки. Обеспечивается повышение показателей экологической безопасности. 2 ил.

Изобретение относится к области водоотведения, а именно к способам моделирования аппаратов (устройств) биологической очистки сточных вод на канализационных очистных сооружениях. Способ определения концентрации рециркулирующего ила в системе биологической очистки сточных вод включает декомпозицию вторичного отстойника/отстойников на совокупность концентрически расположенных n подэлементов, имеющих первый и второй выходные потоки, n≥1, и расположенных по ходу движения входного потока от центра во все стороны в радиальном направлении. Затем определяют массовый расход ила во входном потоке вторичного отстойника/отстойников, расходы первого и второго выходного потоков концентрических подэлементов вторичного отстойника/отстойников, скорости осаждения i-ой фракции ила, оседающей в i-ом подэлементе вторичного отстойника, массовый расход ила в первом и втором выходных потоках i-го подэлемента вторичного отстойника, массовый расход ила в первом и втором выходных потоках вторичного отстойника, и концентрации ила в первом и втором выходном потоке вторичного отстойника. Предложенный способ определения концентрации загрязнений в очищенных сточных водах и концентрации ила в рециркуляционном потоке системе биологической очистки сточных вод позволяет определять концентрации веществ в потоках с учетом происходящих процессов в аппаратах (устройствах), что обеспечивает повышение качества и надежности биологической очистки сточных вод. 4 ил.

Предлагаемые технические решения относятся к базирующейся на глобальной системе местоопределения системе управления транспортировкой твердых коммунальных отходов с использованием подвижных объектов, в качестве которых могут быть наземные транспортные средства. Технической задачей изобретения является повышение избирательности и помехоустойчивости приемников шумоподавления ложных сигналов (помех), принимаемых по дополнительным каналам. Система (1) материально-технического обеспечения, реализующая предлагаемый способ содержит глобальную систему (2) местоопределения, спутники (3.1-3.5), железнодорожный вагон (4), железнодорожный путь (5), источник (6) электропитания, панель (7) солнечной батареи, исполнительное устройство (8), приемник (9) GPS-сигналов, микропроцессор (10.1), модем (11.1). Модем (11.1) содержит микропроцессор (10.1), исполнительные устройства, задающий генератор, фазовый манипулятор, первый гетеродин, первый смеситель, усилитель мощности, дуплектор, приемопередающую антенну, второй усилитель мощности, второй гетеродин, второй смеситель, первый фильтр нижних частот, перемножитель, узкополосный фильтр, фазовый детектор, второй фильтр нижних частот и систему ФАПЧ. Приемник (9) GPS-сигналов содержит приемную антенну, усилитель мощности, гетеродин, смеситель, первый фильтр нижних частот, перемножитель, узкополосный фильтр, фазовый детектор, второй фильтр нижних частот и систему ФАПЧ. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области метеорологии и может быть использовано для определения местных климатических параметров ливневых дождей. Сущность: устанавливают на местности один автоматический дождемер. В течение заданного временного интервала осуществляют запись текущих значений времени и количества выпавших за это время осадков. Рассчитывают силу каждого дождя. Формируют выборку из ливневых дождей, сила которых превышает установленное значение, и сортируют их в порядке убывания. Определяют множество чисел случаев выпадения ливневых дождей данной силы. Формируют множество сумм случаев выпадения ливневых дождей. Формируют множество средней повторяемости однократного превышения сил дождя в течение заданного временного интервала. Формируют множество периодов однократного превышения сил дождя. Формируют множество климатических констант. Определяют климатическую константу как среднее значение из множества климатических констант. В различных точках местности устанавливают дополнительные автоматические дождемеры. Выполняют измерения, аналогичные указанным выше, и формируют выборку из ливневых дождей, сила которых превышает установленное значение. Формируют общую выборку, объединяя данную выборку и выборку, сформированную по результатам измерений, полученных одним автоматическим дождемером. Технический результат: снижение продолжительности работ, повышение точности определения местных климатических параметров ливневых дождей. 3 з.п. ф-лы, 4 ил.

Использование: для рентгенофлуоресцентного анализа определения концентрации элементного состава вещества. Сущность изобретения заключается в том, что измеряют спектр характеристического излучения по всему диапазону энергий, соответствующих аналитическим линиям содержащихся в пробе элементов одновременно с интенсивностью некогерентно рассеянного излучения, при этом аппроксимируют фон, образованный некогерентно рассеянным излучением, устраняют фон, образованный некогерентно рассеянным излучением, определяют первый статистический момент для каждой энергии, определяют второй статистический момент для каждой энергии, нормируют спектр характеристического излучения по преобразованным интенсивностям некогерентно рассеянного излучения. Технический результат: повышение чувствительности. 2 ил.

Изобретение относится к области теплотехники и может быть использовано в автоматизации управления системами отопления. Технический результат - повышение энергетической эффективности и надежности водяной системы отопления. Состоит из подающей (1) и обратной труб (2), трубы впуска (сброса) воздуха (3), трубы слива воды (4) и комплекса отопительных приборов (5), гидравлически соединенных между собой. На подающей трубе (1) установлен электровентиль (6) и датчик расхода воды (7), на обратной трубе (2) установлен электровентиль (7) и датчик расхода воды (9), на трубах впуска (сброса) воздуха (3) и слива воды (4) установлено по одному электровентилю (10) и (11). Под трубой слива воды (4) расположена теплоизолированная емкость (12), нижняя часть которой через электронасос (13) и электровентиль (14) гидравлически соединена с системой отопления. Также содержит электронный блок управления (15), вход которого соединен с датчиками расхода воды (8) и (9), а выход - с трехходовыми электровентилями (6) и (7), а также электровентилями (10), (11) и (14), электронасосом (13) и оповещателем (16). Вторые выходы трехходовых электровентилей (6) и (7) соединены трубами с теплообменником (17), установленным в нижней части теплоизолированной емкости (12), имеющей переливной трубопровод (18). В качестве привода электровентилей (10), (11) и (14) и трехходовых электровентилей (6) и (7) в заявленной водяной системе отопления могут быть использованы электродвигатели. Емкость (12) может быть установлена на теплоизоляционном основании, по бокам покрыта слоем теплоизоляции и сверху закрыта крышкой из теплоизоляционного материала. Емкость (12) может быть выполнена из прочного, пористого, теплоизоляционного и гидроизоляционного материала. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области теплоэнергетики и может быть использовано в качестве энергохолодильной системы для объектов, функционирующих без связи с атмосферой, например для специальных фортификационных сооружений. Достигаемый технический результат - повышение эффективности использования холодильного потенциала технической воды, сокращение объемов хранилища технической воды и окислителя при сохранении срока режима полной изоляции, а также сбор и утилизация внутри специального фортификационного сооружения отработанных газов двигателя автономной электростанции, исключающих их выброс за пределы специального фортификационного сооружения в режиме полной изоляции. Автономная энергохолодильная система специального фортификационного сооружения, предназначенная для работы в режиме полной изоляции, которая снабжена хранилищем технической воды, выполненным в виде теплоизолированного железобетонного резервуара, разделенного теплоизолирующей перегородкой на две емкости, одна из которых, емкость для хранения чистой холодной технической воды, другая, емкость для сбора нагретой грязной технической воды, линией подачи воды с циркуляционным насосом из емкости для хранения чистой холодной технической в холодильную машину и двигатель автономной электростанции, разделяющейся после циркуляционного насоса на два трубопровода, один из которых, трубопровод, идущий на охлаждение холодильной машины, другой, трубопровод, идущий на охлаждение двигателя автономной электростанции, на каждом из этих трубопроводов установлены регулируемые вентили, при этом трубопровод, идущий на охлаждение холодильной машины, после выхода из холодильной машины соединяется с трубопроводом, идущим на охлаждение двигателя автономной электростанции, контактным теплообменником для очистки отработанных газов двигателя автономной электростанции технической водой, линией подачи отработанных газов от двигателя автономной электростанции в контактный теплообменник, линией подачи нагретой технической воды от двигателя автономной электростанции в контактный теплообменник, линией слива нагретой грязной технической воды из контактного теплообменника в емкость для сбора нагретой грязной технической воды, а также линией подачи очищенных отработанных газов из контактного теплообменника в линию подачи окислителя в двигатель автономной электростанции, при этом линия подачи очищенных отработанных газов из контактного теплообменника присоединяется к линии подачи окислителя через эжектор, установленный на линии подачи окислителя в двигатель. 1 ил.

Устройство предназначено для гашения гидравлических ударов в трубопроводах различного назначения. Устройство содержит трубопровод, полый непроточный демпфирующий элемент, выполненный в виде регулирующей пружины и последовательно соединенных камеры, соединительного патрубка с установленным в нем упором и входного фланца. Гидравлический узел содержит цилиндрическую камеру с входным основанием и выходным основанием, промежуточный патрубок, присоединенный к выходному основанию, причем выходной фланец расположен соосно трубопроводу, отводной патрубок, расположенный под прямым углом к трубопроводу. При этом расстояние между выходным фланцем и трубопроводом меньше расстояния между выходным основанием и отводным патрубком. Предохранительная разрушающаяся мембрана состоит из разрушающейся части, зажатой между входным фланцем полого непроточного демпфирующего элемента и выходным фланцем гидравлического узла, и концентрически расположенной упорной части. При этом регулирующая пружина соединяет упор с упорной частью. Технический результат – повышение надежности гашения гидравлических ударов, возникающих при неправильном использовании оборудования, установленного на трубопроводах. 3 ил.

Изобретение относится к области водоотведения. Способ состоит в предварительном выполнении разбиения бассейна или всей сети водоотведения, к которой подключены водоотводы абонентов, на m непересекающихся районов. Разбивку осуществляют так, чтобы водоотводы любого из абонентов подключались к сети водоотведения только одного непересекающегося района, а количество выпусков воды из непересекающихся районов было минимальным, преимущественно одним. Регистрацию наличия признаков отклонений осуществляют при выявлении на выпуске/выпусках воды непересекающихся районов превышения допустимых значений контролируемого параметра. Дополнительно проводят обследование непересекающихся районов, в которых зарегистрировано наличие признаков отклонений, включающее определение и анализ видов деятельности абонентов, местоположения, конструктивных особенностей их зданий и сооружений, которые указывают на возможное наличие признаков отклонений и определяют перспективных абонентов. Проверку контролируемого параметра на превышение предельно допустимых значений осуществляют только у перспективных абонентов, сточная вода которых поступает к выбранной точке, расположенной на выпуске/выпусках районов, в которых зарегистрировано наличие признаков отклонений. Создают гидравлическую модель сети водоотведения, в которой в качестве исходных данных принимают фактическое водопотребление абонентов, осуществляют гидравлическое моделирование и определяют изменения значений расчетного расхода в сухую погоду в зависимости от времени t суток. Проводят измерения фактических расходов сточных вод в течение k суток на выпуске/выпусках воды непересекающихся районов и бассейна водоотведения, k ≥ 2. Устанавливают минимальные значения фактических расходов сточных вод на выпуске/выпусках бассейна водоотведения в интервалах времени суток, = 24 часа, n - количество интервалов за сутки, i =1, 2, …, n, , j =1, 2, …, k, - фактический расход сточных вод на выпуске/выпусках бассейна водоотведения в интервале времени в j-е сутки. Определяют коэффициенты отклонения бассейна водоотведения путем деления значений минимальных фактических расходов сточных вод на значения расчетных расходов сточных вод на каждом интервале . Устанавливают минимальные значения фактических расходов сточных вод на выпуске/выпусках непересекающихся районов в интервале времени Δti суток, = 24 часа, n - количество интервалов за сутки, i =1, 2, …, n, h =1, 2, …, m, , j =1, 2, …, k, - фактический расход сточных вод на выпуске h в интервале времени в j-е сутки. Определяют коэффициенты отклонения непересекающихся районов путем деления значений минимальных фактических расходов сточных вод на значения расчетных расходов сточных вод на каждом интервале . Определяют среднее значение коэффициентов отклонения бассейна водоотведения и среднее значение коэффициентов отклонения для каждого непересекающегося района . В качестве контролируемого параметра принимают среднее значение коэффициентов отклонения расходов сточных вод непересекающихся районов , в качестве признаков отклонений принимают превышение среднего значения коэффициентов отклонения расходов сточных вод непересекающегося района над средним значением коэффициентов отклонения расходов сточных вод бассейна водоотведения . Обеспечивается повышение эффективности регистрации наличия признаков отклонений в системе водоотведения. 11 ил.

Изобретение относится к области теплотехники и может быть использовано в автоматизации управления системами отопления. Водяная система отопления состоит из подающей (горячей) (1) и обратной (охлажденной) (2) труб и подключенных к ним через водяные трехходовые электровентили (3) и (4) соответственно подающий (5) и обратный (6) стояки с отопительными приборами (7), гидравлически связанными между собой, автоматического воздухоотводчика (8), распложенного в верхней части подающего стояка (5), электронасоса (9), трубы слива воды (10), электронный блок управления (11) с датчиками разгерметизации (12) в виде датчиков обнаружения воды и оповещателем (13). Электронный блок управления (11) с датчиками разгерметизации (12) соединен при помощи линий (14). Для управления трехходовыми электровентилями (3) и (4), электронасосом (9) и оповещателем (13) от электронного блока управления (11) отходят соответственно линии управления (15), (16) и (17). Входы трехходовых электровентилей (3) и (4) соответственно подключены к подающему (5) и обратному (6) стоякам. Первые выходы трехходовых электровентилей (3) и (4) подсоединены соответственно к подающей (1) и обратной (2) трубам, а вторые выходы трехходовых электровентилей (3) и (4) соединены трубами между собой и со входом электронасоса (9), выход которого через трубу слива (10) подсоединен к канализационному трубопроводу. Технический результат - упрощение конструкции и повышение её надежности. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области систем водоотведения. Система содержит множество сетей водоотведения, разделенных на m зон, m≥1, в состав которых включены узлы учета расхода сточных вод, установленные на выходах из каждой зоны, снабженные средствами вывода информации, по меньшей мере один датчик количества атмосферных осадков с возможностью определения интенсивностей дождей, блок определения водопотребления в зонах, блок определения водоотведения в зонах, к входу которого подключены выходы средств вывода информации узлов учета расхода сточных вод, блок оценки объема атмосферных осадков в зонах, к входу которого подключены выходы по меньшей мере одного датчика количества атмосферных осадков, блок оценки водоотведения в зонах от индивидуальных источников водоснабжения, блок формирования зональных баз данных, содержащих поля данных интервалов времени k, водопотребления водоотведения водоотведения от индивидуальных источников водоснабжения объема атмосферных осадков к входу которого подключены выходы блока определения водопотребления в зонах, блока определения водоотведения в зонах, блока оценки объема атмосферных осадков в зонах, блока оценки водоотведения в зонах от индивидуальных источников водоснабжения, блок первичной выборки данных из зональных баз данных по условию равенства нулю объема атмосферных осадков за сутки, к входу которого подключен выход блока формирования зональных баз данных. Блок формирования зональных баз данных выполнен с возможностью формирования полей данных интервалов времени k продолжительностью Δt, n - количество интервалов за сутки, i=1, 2, …, n. Блок первичной выборки данных из зональных баз данных по условию равенства нулю объема атмосферных осадков за сутки выполнен с возможностью осуществления выборки по условию равенства нулю объема атмосферных осадков за предыдущие и текущие сутки. Система дополнительно снабжена базой данных водопотребления абонентов, выход которой присоединен к входу блока определения водопотребления в зонах, блоком формирования минимальных фактических значений объемов водоотведения в зонах за каждый интервал времени Δt в течение сухих суток, h=1, 2, …, m, k=1, 2, …, n, - фактические значения объемов водоотведения на выходах из зон h в интервалы времени k продолжительностью Δt, к входу которого подключен выход блока первичной выборки данных, блоком гидравлического моделирования, выполненным с возможностью формирования расчетных значений объемов водоотведения в зонах за каждый расчетный интервал времени Δt в течение сухих суток, блоком определения степени отклонения объемов водоотведения в зонах, выполненным с возможностью формирования коэффициентов отклонения, которые определяются путем деления минимальных фактических значений объемов водоотведения в зонах на расчетные значения объемов водоотведения в зонах на каждом интервале продолжительности Δt, к входу которого подключены выход блока формирования минимальных фактических значений объемов водоотведения и выход блока гидравлического моделирования, блоком выявления балластных притоков сточных вод в зонах, выполненным с возможностью предварительного выявления перспективных абонентов в зоне, где коэффициенты отклонения будут наибольшими по сравнению с другими зонами, к входу которого подключен выход блока определения степени отклонения объемов водоотведения в зонах. Обеспечивается расширение области применения и повышение достоверности системы. 9 ил.

Изобретение относится к области водоснабжения. Способ состоит в использовании трубопровода, состоящего из трех взаимосвязанных участков. Первый участок входа подземных вод в трубопровод выполняют в виде перфорированного трубопровода. Второй участок транзита подземных вод выполняют в виде герметичного трубопровода, погруженного в подрусловый водоносный слой параллельно поверхности воды этого слоя. Во втором участке создается напор воды, равный превышению абсолютной отметки воды в точке сопряжения первого участка со вторым над абсолютными отметками воды в трубопроводе на втором участке. Третий участок разгрузки подземных вод выполняют в виде вертикального герметичного трубопровода, выходящего из водоносного слоя на высоту 1,2-1,5 м от поверхности земли с запорным краном, открываемым при отборе воды из трубопровода. Обеспечивается подъем подрусловых вод временных водотоков от естественного уровня их залегания до пьезометрического уровня, находящегося выше дневной поверхности. 3 ил.

Изобретение относится к области водоотведения. Система содержит приемный и сборный резервуары, вакуумный насос, центробежный насос, два вентилятора, отводные трубопроводы, всасывающий трубопровод. Система дополнительно снабжена жилым модулем, состоящим из жилой части жилого модуля и технического подпола жилого модуля, подсобным модулем, состоящем из рабочей части подсобного модуля и технического подпола подсобного модуля, межмодульным шлюзом, по крайней мере одним санитарно-техническим прибором и трубопроводом стока, промежуточным трубопроводом, двумя автоматическими запорными органами, обратным клапаном, датчиком давления, электрическим двигателем вакуумного насоса, электрическим двигателем центробежного насоса, двумя электрическими двигателями вентиляторов, тремя подающими воздуховодами, двумя подводящими воздуховодами, двумя воздуховодами предварительного нагрева, тремя промежуточными воздуховодами, тремя автоматическими воздушными тройниками с заслонками, автоматической воздушной заслонкой, всасывающим воздуховодом, двумя отводящими воздуховодами, двумя узлами подготовки воздуха с двумя регулирующими устройствами узлов подготовки воздуха, двумя воздуховодами вентиляции, тремя датчиками температуры, двумя датчиками контроля наполнения, программируемым контроллером с каналами связи. Жилой модуль соединен с подсобным модулем с помощью модульного шлюза. По крайней мере один трубопровод стока, первый подающий воздуховод, первый воздуховод предварительного нагрева расположены в жилом модуле. Первый отводной трубопровод, первый и второй автоматические запорные органы, первый вентилятор с электрическим двигателем первого вентилятора, первый промежуточный воздуховод, первый автоматический воздушный тройник с заслонками, приёмный резервуар с первым датчиком температуры и первым датчиком контроля наполнения находятся в техническом подполе жилого модуля. По крайней мере один санитарно-технический прибор, первый узел подготовки воздуха с первым регулирующим устройством узлов подготовки воздуха, первый воздуховод вентиляции, программируемый контроллер находятся в жилой части жилого модуля. Второй подающий воздуховод, второй воздуховод предварительного нагрева, промежуточный трубопровод расположены в подсобном модуле. Обратный клапан, второй вентилятор с электрическим двигателем второго вентилятора, второй промежуточный воздуховод, второй автоматический воздушный тройник с заслонками, центробежный насос с электрическим двигателем центробежного насоса, расположены в техническом подполе подсобного модуля. Сборный резервуар со вторым датчиком температуры, датчиком давления и вторым датчиком контроля наполнения, всасывающий воздуховод, вакуумный насос с электрическим двигателем вакуумного насоса, третий промежуточный воздуховодом, третий автоматический воздушный тройник с заслонками, второй узел подготовки воздуха со вторым регулирующим устройством узлов подготовки воздуха, второй вентиляционный воздуховод, автоматическая воздушная заслонка расположены в рабочей части подсобного модуля. По крайней мере один санитарно-технический прибор соединен с первым отводным трубопроводом с помощью по крайней мере одного трубопровода стока. Первый отводной трубопровод соединен с приемным резервуаром в верхней точке приемного резервуара. Первый подводящий воздуховод, первый вентилятор с электрическим двигателем первого вентилятора, первый промежуточный воздуховод, первый автоматический воздушный тройник с заслонками соединены последовательно. Первый автоматический воздушный тройник с заслонками соединен с первым узлом подготовки воздуха посредством первого подающего трубопровода и первого трубопровода предварительного нагрева, причем первый трубопровод предварительного нагрева проходит через приемный резервуар. Первый вентиляционный воздуховод соединен с первым узлом подготовки воздуха. На первый отводящий трубопровод установлен первый автоматический запорный орган между трубопроводами стока и приемным резервуаром. Приемный резервуар с установленными в нём первым датчиком температуры и первым датчиком контроля наполнения в нижней точке соединен со сборным резервуаром в верхней точке посредством всасывающего трубопровода, с установленным на нем вторым автоматическим запорным органом. Второй подводящий воздуховод, второй вентилятор с электрическим двигателем второго вентилятора, второй промежуточный воздуховод, второй автоматический воздушный тройник с заслонками соединены последовательно. Второй автоматический воздушный тройник с заслонками соединен со вторым узлом подготовки воздуха посредством второго подающего трубопровода и второго трубопровода предварительного нагрева, причем второй трубопровод предварительного нагрева проходит через сборный резервуар. В сборный резервуар установлены второй датчик температуры, датчик давления и второй датчик контроля наполнения. Сборный резервуар соединен с всасывающим воздуховодом в верхней точке. Всасывающий воздуховод, с установленной на нем автоматической воздушной заслонкой, вакуумный насос с электрическим двигателем вакуумного насоса, третий промежуточный воздуховод, третий автоматический воздушный тройник с заслонками соединены последовательно. Третий автоматический воздушный тройник с заслонками соединен с первым отводящим воздуховодом и со вторым узлом подготовки воздуха посредством третьего подающего воздуховода. Второй узел подготовки воздуха соединен со вторым вентиляционным воздуховодом и вторым отводящим воздуховодом. Промежуточный трубопровод, центробежный насос с электрическим двигателем центробежного насоса, отводящий трубопровод с установленным на нем третьим автоматическим запорным органом соединены последовательно. Сборный резервуар в нижней точке соединен с промежуточным трубопроводом. Один конец двух подводящих воздуховодов и двух отводящих воздуховодов расположены за пределами жилого и подсобного модулей. Третий датчик температуры расположен за пределами жилого, подсобного модулей и межмодульного шлюза. Программируемый контроллер соединен с тремя автоматическими запорными органами, тремя автоматическими воздушными тройниками с заслонками, автоматической воздушной заслонкой, тремя датчиками температуры, двумя датчиками контроля наполнения, двумя электрическими двигателями вентиляторов, электрическим двигателем вакуумного насоса, электрическим двигателем центробежного насоса, двумя регулирующими устройствами узлов подготовки воздуха посредством каналов связи. Обеспечивается повышение показателей энергоэффективности, расширение области применения. 1 ил.

Изобретение относится к области водоснабжения. Устройство содержит водосборник, холодильную машину, воздуховод, вентилятор, по крайней мере один гидронасос. Холодильная машина содержит компрессор, конденсатор, трубопроводы хладагента, испаритель, выполненный в виде по крайней мере одного теплоотводящего элемента. Воздуховод выполнен в виде вертикального и горизонтального участков, соединенных между собой отводом. Устройство дополнительно снабжено воздухозаборником, воздушным фильтром, источником высокого напряжения с отрицательной и положительной клеммами, электропроводом, озонатором, состоящим из по крайней мере двух параллельных цилиндров с осевыми изолированными проволочными электродами, по крайней мере одной секцией теплообмена, состоящей из входного теплообменного элемента, соединенного с гидронасосом с помощью входного трубопровода, выходного теплообменного элемента, соединенного с гидронасосом с помощью выходного трубопровода, циркуляционного трубопровода, соединяющего входной и выходной теплообменные элементы. Воздухозаборник установлен вертикально, выполнен расширяющимся вниз и в верхней части соединен с вертикальным участком воздуховода. Воздушный фильтр и озонатор установлены последовательно относительно движения воздуха внутри вертикального участка воздуховода. Осевые изолированные проволочные электроды озонатора подсоединены к отрицательной клемме источника высокого напряжения посредством электропровода. Входные и выходные теплообменные элементы установлены внутри горизонтального участка воздуховода. Теплоотводящие элементы и вентилятор установлены последовательно относительно движения воздуха внутри горизонтального участка воздуховода между входными и выходными теплообменными элементами. Конденсатор установлен внутри горизонтального участка воздуховода после теплообменных элементов. Водосборник соединен с горизонтальным участком воздуховода между отводом и вентилятором. Обеспечивается расширение области применения. 1 ил.

Изобретение относится к области теплоэнергетики и предназначено для выработки тепловой энергии на котельных с использованием сжиженного природного газа (СПГ) в качестве экологически чистого топлива. Достигаемый технический результат - повышение эффективности газификации сжиженного природного газа и подогрева испарившегося сжиженного природного газа, снижение массогабаритных характеристик теплообменных аппаратов, а также повышение безопасности и надежности эксплуатации котельной со сжиженным природным газом в качестве топлива. Из хранилища СПГ 4 сжиженный природный газ поступает в теплообменник-испаритель СПГ 6, расположенный внутри теплоизолированной емкостью 10 с промежуточным теплоносителем, в качестве которого используется вода. Сжиженный природный газ в теплообменнике-испарителе СПГ 6 нагревается и испаряется за счет теплообмена с теплым промежуточным теплоносителем (водой), циркулирующим по системе промежуточного теплоносителя 8. Для циркуляции воды в системе 8 охлажденная вода из теплоизолированной емкости 10 забирается циркуляционным насосом 9 и подается в теплообменник-нагреватель промежуточного теплоносителя 11, который расположен в коробе отвода дымовых газов 3. В теплообменнике-нагревателе промежуточного теплоносителя 11 вода нагревается за счет теплообмена с дымовыми газами, уходящими из котельной установки 1 через дымовую трубу 2. Затем горячая вода по системе 8 поступает в теплообменник-подогреватель испарившегося сжиженного природного газа 7, после которого теплая вода подается в теплоизолированную емкость 10 с промежуточным теплоносителем. Данный круговорот воды по системе промежуточного теплоносителя 8 обеспечивает стабильную и безопасную передачу тепла дымовых газов котельной установки 1 сжиженному природному газу. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области вычислительной техники. Технический результат заключается в расширении арсенала технических средств. Система содержит два объекта управления, модуль анализа диагностируемых параметров, содержащий блок анализа диагностируемых параметров, блок ввода эталонных диагностируемых параметров, причем в качестве объектов управления принимают системы водоотведения, блок анализа диагностируемых параметров выполнен с возможностью ввода фактических значений целевых показателей надежности, качества, энергетической эффективности объектов управления, блок ввода эталонных диагностируемых параметров выполнен с возможностью ввода плановых значений целевых показателей надежности, качества, энергетической эффективности объектов управления, а система дополнительно снабжена модулем ввода характеристик объекта управления, модулем определения эксплуатационных затрат объектов управления, содержащим блок определения эксплуатационных затрат объектов управления при фактических значениях целевых показателей надежности, качества. 5 ил.

Изобретение относится к области энергетики, в частности к системам автономного энергоснабжения удаленных военных объектов и населенных пунктов с использованием газификации на основе сжиженного природного газа (СПГ). Система автономного энергоснабжения включает связанные между собой теплоизолированное криогенное хранилище 1 СПГ, испаритель 2 СПГ, газовый двигатель 3 с электрогенератором 4, котельную станцию 5 и газовый коллектор 6, из которого одна часть газа направляется по газопроводу 8 в газовый двигатель 3, а вторая часть испарившегося сжиженного природного газа направляется по газопроводу 6 в котельную станцию 5, связанную тепловой сетью 9 с насосом 10 с потребителями тепловой энергии. Система снабжена заглубленной камерой 12, заполненной инертным газом, в которой расположены испаритель 2 и теплообменник 13 с электрическим нагревом, а также блоком аккумуляторных батарей 14. Газовый коллектор 6 связан с теплоизолированным криогенным хранилищем 1 линией наддува 15 с обратным клапаном 16, электрогенератор 4 электросетью через блок аккумуляторных батарей 14 с теплообменником 13 с электрическим нагревом. Достигаемый технический результат - упрощение конструкции, повышение надежности обслуживания автономной системы энергоснабжения. 1 ил.

Изобретение относится к области теплоэнергетики и предназначено для выработки тепловой энергии на котельных с использованием сжиженного природного газа (СПГ). Котельная военного объекта включает котельную установку и криостат СПГ, соединенный с системой испарения СПГ и подогрева газа перед его подачей в топку котельной установки. Котельная снабжена заглубленным железобетонным сооружением, разделенным на две секции теплоизолированной стенкой. В первой секции расположен криостат СПГ с линией заправки сжиженного природного газа, а во второй - теплообменник-испаритель СПГ и теплообменник-нагреватель линии подачи атмосферного воздуха в котельную установку. Линия подачи атмосферного воздуха в котельную установку перед входом в заглубленное сооружение проходит через теплообменный аппарат с электрическим подогревателем и снабжена компрессором и теплообменником-подогревателем воздуха перед его подачей в топку. Теплообменник-подогреватель испарившегося СПГ и теплообменник-подогреватель воздуха расположены в теплообменном аппарате, через который проходит линия удаления дымовых газов котельной установки. Технический результат - возможность точного регулирования потока тепловой энергии от источника тепла для испарения необходимого количества СПГ, повышение безопасности и надежности эксплуатации хранилищ с криогенным топливом. 1 ил.

Изобретение относится к измерительной технике, в частности к системам мониторинга притока воды. Система оперативного диагностирования притока воды включает модуль перекачки воды, приёмный резервуар с подводящим трубопроводом, модуль контрольно-измерительных приборов, модуль анализа диагностируемых параметров, который дополнительно снабжён блоками ввода геометрических характеристик приёмного резервуара, ввода геометрических характеристик подводящего трубопровода, анализа откачки воды из приёмного резервуара, а модуль контрольно-измерительных приборов дополнительно снабжён датчиками уровня воды, установленными на подводящем трубопроводе и датчиком уровня воды, установленным в приёмном резервуаре, модуль перекачки воды дополнительно снабжён запорно-регулирующим устройством с исполнительным органом, установленным на подводящем трубопроводе между датчиком уровня воды, установленным на подводящем трубопроводе, и приёмным резервуаром. При этом выходы всех устройств помощи каналов связи подключены к входу блока анализа водопритока. Техническим результатом является расширение области применения. 2 ил.

Изобретение относится к области водоснабжения. Способ состоит в измерении напора во всех контрольных точках сети, вычислении разности между полученными значениями напоров и заданными, определении диктующей точки с минимальным алгебраическим значением разности, выравнивании действительного значения напора в диктующей точке с заданным значением напора. На первом этапе проводят гидравлическое моделирование системы водоснабжения и определяют места расположения контрольных точек на сети, накапливают статистическую информацию о расположении диктующей точки в зависимости от времени суток и определяют алгоритм определения диктующей точки k в зависимости от времени суток, k ∈ 1, 2, …, n, где n - общее количество контрольных точек. Обеспечивается снижение эксплуатационных затрат и расширение области применения. 3 ил.

Изобретение относится к области водоснабжения. Устройство содержит водосборник, гидронасос, теплообменник-конденсатор, воздуховод, вентилятор, программируемое устройство управления, холодильную машину. Холодильная машина выполнена в виде компрессора, соединенного с конденсатором конденсаторным трубопроводом, с испарителем испарительным трубопроводом, и соединительного трубопровода, соединяющего конденсатор и испаритель. Устройство дополнительно снабжено электрическим двигателем вентилятора, статическим преобразователем частоты электрического двигателя вентилятора, дополнительным вентилятором, электрическим двигателем дополнительного вентилятора, статическим преобразователем частоты электрического двигателя дополнительного вентилятора, трубопроводом воды, соединяющим теплообменник-конденсатор и водосборник, датчиком температуры атмосферного воздуха, датчиком влагосодержания атмосферного воздуха, двенадцатью каналами связи, первой камерой обработки воздуха, статическим преобразователем частоты электрического двигателя гидронасоса. Устройство также дополнительно снабжено второй камерой обработки воздуха, первой камерой перекачки сорбента, статическим преобразователем частоты электрического двигателя первого дополнительного гидронасоса, второй камерой перекачки сорбента, статическим преобразователем частоты электрического двигателя второго дополнительного гидронасоса, пятью дополнительными воздуховодами. Электрический двигатель вентилятора запитан от статического преобразователя частоты электрического двигателя вентилятора. Вентилятор, воздуховод и первая камера обработки воздуха соединены последовательно. Первый датчик насыщения сорбента влагой, испаритель холодильной машины, гидронасос расположены в первой камере обработки воздуха ниже уровня сорбента. Электрический двигатель гидронасоса запитан от статического преобразователя частоты электрического двигателя гидронасоса. Гидронасос соединен с трубопроводом орошения воздуха. Электрический двигатель дополнительного вентилятора запитан от статического преобразователя частоты электрического двигателя дополнительного вентилятора. Электрический двигатель первого дополнительного гидронасоса запитан от статического преобразователя частоты электрического двигателя первого дополнительного гидронасоса. Электрический двигатель второго дополнительного гидронасоса запитан от статического преобразователя частоты электрического двигателя второго дополнительного гидронасоса. Второй датчик насыщения сорбента влагой, конденсатор холодильной машины, нагревательный элемент расположены во второй камере обработки воздуха ниже уровня сорбента. Первая камера перекачки сорбента соединена с первой камерой обработки воздуха. Вторая камера перекачки сорбента соединена со второй камерой обработки воздуха. Первая камера перекачки сорбента соединена со второй камерой обработки воздуха. Вторая камера перекачки сорбента соединена с первой камерой обработки воздуха. Программируемое устройство управления соединено с датчиком температуры атмосферного воздуха, с датчиком влагосодержания атмосферного воздуха, со статическим преобразователем электрического двигателя гидронасоса, со статическим преобразователем электрического двигателя вентилятора, с первым датчиком насыщения сорбента влагой, с электроприводом первой автоматической задвижки, со статическим преобразователем электрического двигателя первого дополнительного гидронасоса, со статическим преобразователем электрического двигателя дополнительного вентилятора, с электроприводом второй автоматической задвижки, со статическим преобразователем электрического двигателя второго дополнительного гидронасоса, с нагревательным элементом, со вторым датчиком насыщения сорбента влагой. Обеспечивается расширение области применения. 1 ил.

Изобретение относится к области водоотведения. Канализационная насосная станция содержит приемный резервуар, трубопровод подачи стоков, по меньшей мере, два насоса, соединенные с напорными трубопроводами с обратными клапанами. Устройство дополнительно снабжено всасывающими трубопроводами насосов, соединяющие приемный резервуар с насосами, по меньшей мере, двумя напорными водоводами, по меньшей мере, двумя вертикальными колоннами, по меньшей мере, двумя противонаправленными обратными клапанами, соединительной гребенкой, соединенной, по меньшей мере, с двумя напорными водоводами, по меньшей мере, с двумя противонаправленными обратными клапанами, по меньшей мере, с двумя напорными трубопроводами так, что точки соединения напорных трубопроводов и противонаправленных обратных клапанов совпадают. Вертикальные колонны соединены с противонаправленными обратными клапанами, обратные клапаны расположены между насосами и соединительной гребенкой, а противонаправленные обратные клапаны установлены так, что при движении жидкости вверх они закрываются, а при движении вниз – открываются. Вертикальные колоны в верхних точках вертикальных колонн соединены с атмосферой на уровне Н≥Нн вд+П, где Нн вд - разница высотных отметок верхней точки напорных водоводов и верхней точки соединительной гребенки, П - потери напора в напорном водоводе от места его соединения с соединительной гребенкой до отметки верхней точки напорных водоводов. Обеспечивается повышение показателей надежности устройства. 2 ил.

Изобретение относится к области энергетики и машиностроения и предназначено для совместной выработки тепловой и электрической энергии. Силовая установка с активным котлом-утилизатором высокотемпературного кипящего слоя содержит дизель-генератор, котел-утилизатор в виде котлоагрегата с топкой высокотемпературного кипящего слоя, включающего механическое топочное устройство с наклонной к горизонту подвижной колосниковой решеткой, поверхности нагрева, дутьевые зоны первичного и вторичного воздуха, питатель топлива, эжектор возврата уноса, к газовпускному патрубку котла-утилизатора подключен дутьевой вентилятор, к выхлопному коллектору дизель-генератора подключен газоход перепуска отработавших газов в атмосферу с глушителем шума, на линии нагнетания дутьевого вентилятора, на выхлопном коллекторе и на газоходе перепуска отработавших газов в атмосферу установлены устройства регулирования расхода сред. На газоходе уходящих газов котла-утилизатора установлено устройство очистки уходящих газов и дымосос, в месте соединения выхлопного коллектора и газовпускного патрубка котла-утилизатора установлен узел смешения отработавших газов дизель-генератора и дутьевого воздуха, в котором патрубок отработавших газов выполнен в виде трубы, изогнутой под углом 90°, выходная часть патрубка направлена в сторону движения потока первичного воздуха, участок газовпускного патрубка в месте установки патрубка отработавших газов дизель-генератора имеет сужение. Изобретение позволяет снизить выброс вредных веществ в атмосферу. 1 ил.

Изобретение относится к области энергетики и машиностроения и предназначено для совместной выработки тепловой и электрической энергии. Силовая установка с активным котлом утилизатором высокотемпературного кипящего слоя содержит дизель-генератор, котел утилизатор в виде котлоагрегата с топкой высокотемпературного кипящего слоя, включающего механическое топочное устройство с наклонной к горизонту подвижной колосниковой решеткой, поверхности нагрева, дутьевые зоны первичного и вторичного воздуха, питатель топлива, эжектор возврата уноса, к газовпускному патрубку котла-утилизатора подключен дутьевой вентилятор, к выхлопному коллектору дизель-генератора подключен газоход перепуска отработавших газов в атмосферу с глушителем шума, на линии нагнетания дутьевого вентилятора, на выхлопном коллекторе и на газоходе перепуска отработавших газов в атмосферу установлены устройства регулирования расхода сред. В воздуховоде подачи воздуха в первую дутьевую зону установлено сужение, выполненное в виде усеченного конуса, вершина усеченного конуса направлена в сторону движения потока воздуха, выхлопной коллектор дизель-генератора введен в пространство между внутренней стенкой воздуховода подачи воздуха в первую дутьевую зону и наружной стенкой усеченного конуса. Изобретение позволяет повысить экономичность работы установки при сжигании в котле-утилизаторе твердого топлива с высокой влажностью. 1 ил.

Изобретение относится к области водоснабжения, в частности к системе обработки воды. Изобретение может быть использовано для насыщения воды питьевого или иного назначения минералами в зависимости от состава исходной воды и потребности. Устройство для минерализации воды содержит последовательно соединенные узел ввода воды; узел минерализации, выполненный в виде полого цилиндра, на основаниях которого установлены водопроницаемые пористые перегородки, и содержащего между указанными перегородками по ходу течения жидкости к ступеней минерализации, разделенных n водопроницаемыми пористыми перегородками, где n=к+1, содержащих различные загрузки; узел вывода воды, устройство дополнительно снабжено: последовательно соединенными подводящим трубопроводом, расходным резервуаром, с установленным в нем датчиком температуры воды, насосом с электрическим двигателем, входным и выходным патрубками насоса, расходомером, статическим преобразователем частоты, выполненным с возможностью подачи электрического питания на электрический двигатель и изменения скорости его вращения, программируемым контроллером с каналами связи, при этом выходной патрубок насоса соединен с узлом ввода воды, расходомер установлен на выходном патрубке насоса, программируемый контроллер соединен с датчиком температуры воды, статическим преобразователем частоты, расходомером посредством каналов связи. Техническим результатом изобретения является повышение эффективности устройства для минерализации воды. 3 ил., 1 табл.

Изобретение относится к области гидротехники, в частности к системе исследования гидравлических ударов в напорных трубопроводах, транспортирующих жидкости. Изобретение может быть использовано для исследования гидравлического удара в трубопроводах, возникающих при пуске и остановке насосов в различных режимах, закрытии клапанов и задвижек, аварийном отключении насосов, изменении режимов работы насосных агрегатов и ошибок обслуживающего персонала на предприятиях энергетики, нефтехимической промышленности, коммунального водо- и теплоснабжения. 2 ил.

Изобретение относится к области гидротехники, в частности к системе трубопроводов, транспортирующих жидкости. Изобретение может быть использовано для гашения гидравлического удара в трубопроводах, возникающих при закрытии клапанов и задвижек, аварийном отключении насосов, изменении режимов работы насосных агрегатов и ошибок обслуживающего персонала на предприятиях энергетики, нефтехимической промышленности, коммунального водо- и теплоснабжения. Устройство предназначено для гашения гидроударов в системах напорных трубопроводов, транспортирующих жидкости. Устройство содержит участок центрального трубопровода, соединенного с входным патрубком, входящим вовнутрь цилиндрической камеры, расположенного так, что конец входного патрубка на некотором расстоянии от стенки камеры, к которой присоединен выходной фланец, и жидкость изливается в цилиндрическую камеру. В нижней части цилиндрической камеры располагается отводной патрубок, соединенный с продолжением трубопровода, куда уходит жидкость. Выходной фланец соединяется с входным фланцем посредством болтового соединения. Между фланцами зажата предохранительная разрушающаяся мембрана, рассчитанная на воздействие определенного давления, при превышении которого она ломается, открывая жидкости доступ в камеру. Входной фланец соединен с патрубком, который в свою очередь соединен с камерой. Технический результат заключается в повышении надежности работы устройства, упрощении ремонта и снижении стоимости его эксплуатации. 1 ил.

Система содержит абонентский комплект (1), установленный в водомерном узле (2) абонента. Абонентский комплект включает в себя контроллер (3), счетчик (4) учета потребления воды (4) и приемно-передающее устройство (5) абонента, выполненное в виде GSM-модема, для передачи информации по беспроводной сети (6) в сервер (7) обработки и хранения данных, связанный с сервером (10) управления расчетами, которые установлены в централизованной диспетчерской (8) поставщика воды. Абонентский комплект снабжен энергонезависимой памятью (9), хранящей индивидуальный номер абонента и соединенной со счетчиком учета потребления воды и с контроллером, выполненной с возможностью накопления показаний счетчика учета потребления воды с дискретностью за период. Сервер управления расчетами выполнен с возможностью определения типа абонентов (12) и числа жителей у абонентов жилого типа по индивидуальному номеру абонента. Система снабжена модулем индивидуальной выборки данных по типам абонентов, вход которого соединен с выходами сервера обработки и хранения данных и сервера управления расчетами, аналитическим модулем (13), выполненным с возможностью получения зависимостей неравномерности потребления воды абонентами жилого типа от числа жителей, вход которого соединен с выходами модуля индивидуальной выборки данных по типам абонентов и сервера управления расчетами. Повышается надежность и расширяется функциональность системы. 1 з.п. ф-лы, 4 ил.

Изобретение относится к нефтедобывающей промышленности строительства, а именно к способу ликвидации напорных водозаборных скважин, находящихся в предаварийном состоянии. Технический результат заключается в повышении надежности выполнения работ по ликвидации скважины. Способ ликвидации напорных водозаборных скважин включает присоединение к сетевому трубопроводу трубопроводов для подачи сжатого воздуха для вытеснения воды через фильтр скважины до верхней отметки водоносного горизонта с последующим подачей тампонажного раствора в обсадную трубу скважины. Первоначально на оголовке скважины над основной задвижной устанавливают дополнительную задвижку с проходным сечением, близким к проходному сечению обсадной трубы. Дополнительную задвижку закрывают и полностью открывают основную задвижку. Далее по сетевому трубопроводу подают сжатый воздух и вытесняют из обсадной трубы скважины воду через фильтр скважины до верхней отметки водоносного горизонта. После чего к дополнительной задвижке подсоединяют трубопровод от бетононасоса тампонажного раствора. Включают бетононасос тампонажного раствора и выравнивают давления нагнетания тампонажного раствора и сжатого воздуха, закрывают подачу сжатого воздуха. Далее открывают дополнительную задвижку и полностью заполняют обсадную трубу скважины тампонажным раствором. После чего закрывают дополнительную задвижку и отсоединяют трубопроводы подачи сжатого воздуха и бетононасоса тампонажного раствора. 1 ил.

Изобретение относится к области систем водоснабжения. Способ состоит в том, что измеряют напор воды на выходе насоса, сравнивают измеренный напор с заданным значением и минимизируют отклонение измеряемого напора от заданного значения путем воздействия на частоту вращения электродвигателя насоса. В качестве насоса (1) применяют группу (2) параллельно установленных насосов, при этом: а) создают гидравлическую модель системы водоснабжения, включающую насос (1), систему трубопроводов (3), подводящих воду к входу насоса, и систему трубопроводов (4), присоединенных к выходу насоса (1) и подающих воду в распределительную сеть (5), проводят гидравлическое моделирование системы водоснабжения, определяют требуемое значение напора H0 воды на выходе насоса при условии обеспечения требуемого напора hi у всех n потребителей (6), i=1, 2, …, n, и определяют затраты на эксплуатационное содержание системы водоснабжения за жизненный цикл t, принимаемый за 10 лет, где и - затраты на инвестиционную и операционную деятельность, б) выделяют в распределительной сети k зон (7-10) с требуемым напором pj на входе в j зону, j=1, 2, …, k, где р1>р2, р2>р3, …, pk-1>pk, в) снижают требуемое значение напора воды на выходе насоса до H1 из условия обеспечения требуемого напора p2 потребителей зоны j=2 и определяют затраты на эксплуатационное содержание системы водоснабжения за жизненный цикл, где и - затраты на инвестиционную и операционную деятельность, - затраты на эксплуатационное содержание индивидуальной повысительной насосной станции/станций за жизненный цикл, обеспечивающей повышение напоров потребителей зоны j=1 с р2 до p1, г) повторяют этап в), снижая требуемое значение напоров воды на выходе насоса до Н2, …, Hj, …, Hk-1 из условий обеспечения требуемых напоров pj+1 потребителей зоны j+1, и определяют затраты на эксплуатационное содержание системы водоснабжения за жизненный цикл, где и - затраты на инвестиционную и операционную деятельность, - затраты на эксплуатационное содержание индивидуальной повысительной насосной станции/станций за жизненный цикл, обеспечивающей повышение напоров потребителей зоны j с pj+1 до pj, а зоны j-f с pj+1 до pj-f, где f=1, …, j-1, д) определяют требуемое значение напора Hk воды на выходе насоса при условии обеспечения напора pk на входе в зону k и определяют затраты на эксплуатационное содержание системы водоснабжения за жизненный цикл, где и - затраты на инвестиционную и операционную деятельность, - затраты на эксплуатационное содержание индивидуальной повысительной насосной станции/станций за жизненный цикл, обеспечивающей повышение напоров потребителей зоны j с pk до pj, е) формируют множество u=k+1 пар значений затрат Cu на эксплуатационное содержание системы водоснабжения за жизненный цикл и соответствующих им аргументов - требуемых значений напоров Hu воды на выходе насоса, где u=0, 1, …, k, определяют функцию С=f(H), которая в точках Н0, Н1, …, Hk принимает значения, как можно более близкие к значениям С0, С1, …, Ck или равные этим значениям, а заданное значение напора воды на выходе насоса определяют посредством определения напора H, при котором функция С=f(H) принимает минимальные значения при H0 ≤ H ≤ Hk. Обеспечивается снижение затрат на эксплуатационное содержание. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области контроля технического состояния городского водопровода. Техническим результатом является расширение функциональных возможностей за счет возможности определения показателей надежности и определения объемов и стоимости аварийно-восстановительных работ на сетях водоснабжения. Система содержит: блок первичной обработки информации, блок расчета показателей надежности элементов сети, выполненный с возможностью определения показателей: надежности труб в виде интенсивности отказов труб j-го участка, интенсивности ремонта труб j-го участка и определения интенсивности отключения участков, и блок расчета показателей аварийно- восстановительных работ, выполненный с возможностью расчета показателей аварийно- восстановительных работ и стоимостей Cj аварийно-восстановительных работ j-го участка. 7 ил.

Изобретение относится к области городского водопровода. Технический результат заключается в расширении функциональных возможностей системы, а именно в возможности определения показателей аварийности труб водопроводных сетей, имеющих выделенные зоны, эксплуатируемые под различным давлением, и показателей ремонтопригодности участков водопроводных сетей в виде интенсивностей ремонта в зависимости от их материала и диаметра. Такой результат достигается за счет того, что система содержит блок первичной обработки информации и блок расчета показателей надежности элементов сети, выполненный с возможностью определения показателей надежности труб. 6 ил.

Изобретение относится к области водоотведения, в частности к системам перекачки необезвоженных осадков сточных вод, в которых могут образовываться газы брожения. Система перекачки осадков включает резервуар (1) с подводящим трубопроводом (2), по меньшей мере один насос (3) с напорным и всасывающим трубопроводами (4, 5). Система дополнительно снабжена отводящим трубопроводом (6) и воздушно-гидравлической колонной (7), выполненной в виде вертикальной трубы (8) с нижней и верхней заглушками (9, 10), герметично приваренными соответственно в ее нижней и верхней частях трубы (8), с патрубками (11, 12) соответственно, подвода исходных осадков и отвода дегазированных осадков, расположенных в нижней части трубы (8), выше нижней заглушки (9), и с патрубком (13) отвода газов дегазации, соединенным с верхней заглушкой (10). Верхняя заглушка (10) расположена выше уровня осадков в резервуаре (1). Отводящий трубопровод (6) соединяет резервуар (1) с патрубком (11) подвода исходных осадков колонны (7). Всасывающий трубопровод (5) насоса (3) соединен с патрубком (12) отвода дегазированных осадков колонны (7). Изобретение направлено на расширение области применения, поскольку позволяет откачивать перебродивший осадок. 1 ил.

 


Наверх