Патенты автора Ахмитшин Алмаз Анасович (RU)

Изобретение относится к газораспределителям, используемым в технологических аппаратах для проведения процессов отделения жидкой фазы от газовой и массообменных процессов в системе газ-жидкость, и может быть использовано в газодобывающей, нефтехимической и нефтегазоперерабатывающей промышленности. Газораспределительное устройство аппарата для отделения жидкой фазы от газообразной при массообменных процессах, установленное внутри аппарата, содержит цилиндр с выполненными в образующей его стенке щелями или перфорацией. Патрубок ввода газа, установленный в аппарате, соединен с указанным цилиндром газораспределительного устройства. Наружная поверхность цилиндра снабжена многослойной сеткой, а цилиндр разделен по длине на секции кольцевыми дисками с диаметрами отверстий, уменьшающимися по направлению от патрубка ввода газа. Плотность слоев сетки в каждой секции увеличивается по направлению от патрубка ввода газа. Технический результат: упрощение конструкции, снижение металлоемкости, осуществление более равномерного распределения газового потока. 3 ил.

Изобретение относится к области очистки газа от примесей, преимущественно от различного рода жидких сред, и может быть использовано в газовых сепараторах с организованным отводом жидкости из сепарационной зоны. Обратный клапан для закрепления на нижнем конце дренажной трубы газового сепаратора содержит корпус, запорную пластину, подвижно установленную при помощи колец на корпусе, и ограничитель подъема пластины. Обратный клапан дополнительно снабжен подвижно установленным на корпусе при помощи колец двуплечим рычагом, к одному плечу которого прикреплен поплавок, а второе плечо выполнено в форме скобы для поднятия запорной пластины при всплытии поплавка. Изобретение позволяет повысить эффективность работы газожидкостного сепаратора за счет отсутствия пульсаций в дренажной трубе сепаратора и снизить износ подвижных деталей клапана. 3 ил.

Изобретение относится к аппаратам для проведения теплообменных процессов и может быть использовано в теплообменниках радиально-спирального типа. Теплообменник радиально-спирального типа содержит вертикальный корпус с патрубками подвода и отвода теплоносителей, снабжен коллекторами для первого теплоносителя. Внутри корпуса установлены один над другим два или более блоков теплообменных элементов. Каждый блок сформирован из вертикально установленных теплообменных элементов. Каждый теплообменный элемент выполнен полым с образованием внутреннего радиально-спирального щелевого канала для первого теплоносителя. Теплообменные элементы расположены друг к другу с образованием наружных вертикальных щелевых каналов для перемещения в аксиальном направлении второго теплоносителя. Блоки теплообменных элементов выполнены в форме прямой призмы. Радиально-спиральные щелевые каналы теплообменных элементов каждого блока выполнены из металлических профилированных листов. Щелевые каналы смежных установленных один над другим блоков для протока первого теплоносителя соединены между собой таким образом, что движение теплоносителя в одном из блоков направлено от оси теплообменного блока к периферии, а в смежном блоке - от периферии к оси. Теплообменник радиально-спирального типа может быть выполнен из теплообменных элементов, попарно соединенных между собой так, что движение первого теплоносителя по радиально-спиральным щелевым каналам направлено от оси теплообменного блока к периферии и далее по смежным в паре элементам - от периферии к оси. Технический эффект: упрощение конструкции теплообменника радиально-спирального типа, а также увеличение удельной теплообменной поверхности в единице его объема за счет возможности заполнения объема теплообменника блоками теплообменных элементов. 2 н.п. ф-лы, 12 ил.

Группа изобретений относится к нефтедобывающей отрасли, в частности к увеличению притока нефти на добывающих скважинах и приемистости нагнетательных скважин. Способ включает формирование компрессионного перепада давления между призабойной зоной пласта и полостью насосно-компрессорных труб путем закачки флюида, стравливание давления при передвижении флюида из призабойной зоны к дневной поверхности, создание периодических импульсов давления в призабойной зоне пласта, повторение этапов стравливания и создания импульсов давления; контроль за этими этапами. Перепад давления создают путем закачки флюида в скважину при создании заданного давления в первом ресивере в течение подпериода нагнетания, а сброс до заданного давления производят при открытии клапана управления в течение подпериода сброса через первый ресивер. Давление контролируют по устьевому датчику и датчику давления призабойной зоны. При достижении максимальной скорости установившегося потока флюида в затрубном пространстве за подпериод нагнетания приводят в действие погружной отсекатель потока. При достижении максимального давления за подпериод нагнетания в призабойной зоне пласта подключают второй ресивер. Повышается эффективность и стабильность работы скважины. 2 н.п. ф-лы, 3 ил.

 


Наверх