Патенты автора ИСИДА Хитоси (JP)

Изобретение относится к области металлургии и может быть использовано при производстве сплава Ti-Al с низким содержанием кислорода. Способ осуществляют в охлаждаемом водой медном сосуде плавлением сплава Ti-Al, содержащего не меньше 40 мас.% Al и полученного с использованием материала сплава, состоящего из титанового материала и алюминиевого материала, причем этот материал сплава содержит кислород в общем количестве 0,1 мас.% или больше, а раскисление осуществляют путем выдержки в атмосфере с давлением не менее 1,33 Па. Изобретение позволяет получить сплав на основе Ti-Al с низким содержанием кислорода при использовании исходного низкосортного титанового материала с высоким содержанием кислорода, даже не создавая высокого вакуума. 2 з.п. ф-лы, 3 ил., 5 пр.

Изобретение относится к получению алюминиевых сплавов, в частности к способу раскисления выплавляемых алюминиевых сплавов. Способ раскисления сплава Al-Nb-Ti включает плавление и выдержку сплава, содержащего от 50 до 75 мас.% Al и от 5 до 30 мас.% Nb при суммарном содержании Al и Nb 80 мас.% или менее, с использованием исходных алюминиевого, ниобиевого и титанового материалов с суммарным содержанием кислорода 0,5 мас.% или более, при этом плавление осуществляют методом плавки с использованием охлаждаемого водой медного сосуда в атмосфере с давлением от 1,33 Па до 2,67×105 Па при температуре 1900 К или более. Изобретение направлено на снижение кислорода в сплаве Al-Nb-Ti, с возможностью получения его без использования высокого вакуума из низкосортного исходного материала с высоким содержанием кислорода. 2 з.п. ф-лы, 4 ил., 2 табл., 2 пр.

Изобретение относится к металлургии. Способ включает разливку расплава, полученного плавлением титана или титанового сплава, в кристаллизатор 2 и вытягивание его вниз по мере затвердевания. Поверхность расплава в кристаллизаторе (2) нагревают при горизонтальном перемещении плазменной горелки (7) над поверхностью расплава. Во множестве положений кристаллизатора вдоль окружного направления кристаллизатора (2) предусмотрены термопары (21). Если температура кристаллизатора (2), измеренная одной из термопар (21), является более низкой, чем целевая температура, то выходную мощность плазменной горелки (7) повышают, когда плазменная горелка (7) приближается к местоположению термопары (21). Если упомянутая температура является более высокой, чем целевая температура, то выходную мощность плазменной горелки (7) снижают, когда плазменная горелка (7) приближается к местоположению термопары (21). Обеспечивается повышение качества поверхности слитка. 2 з.п. ф-лы, 8 ил.

Изобретение относится к металлургии. Способ непрерывного литья включает подачу расплавленного титана или титанового сплава в бездонный кристаллизатор 2 с прямоугольным поперечным сечением и вытягивание вниз по мере его затвердевания. Над поверхностью расплавленного металла (12) в кристаллизаторе (2) осуществляют вращение плазменной горелки (7) в горизонтальном направлении. Электромагнитным перемешиванием расплава создают горизонтально вращающееся течение, по меньшей мере, на поверхности расплавленного металла (12) в кристаллизаторе (2). Обеспечивается получение сляба с превосходным состоянием поверхности. 3 з.п. ф-лы, 24 ил., 1 табл.

Изобретение относится к металлургии. Титановый сплав плавят в течение заданного времени методом индукционной плавки в холодном тигле 5 и подают расплав в холодный под 10. Отделяют высокоплотные включения (8) осаждением в холодном поде (10) посредством обдувки поверхности ванны расплавленного титана (6) плазменной струей 11 или облучения поверхности ванны электронным пучком. Расплавленный титановый сплав подают в кристаллизатор (20) для получения титанового слитка 30. Обеспечивается повышение качества титанового слитка и надежность его использования в технике. 4 ил., 2 пр.

 


Наверх