Патенты автора Обросов Кирилл Вениаминович (RU)

Изобретение относится к области авиационного приборостроения и может быть использовано для обеспечения безопасности полета на малых высотах. Известны реализации способа регулярного сканирования, при которых область формирования дальностного поля в координатах угол-угол совпадает с полем обзора локатора и формируется в результате сложения двух движений в координатах угол-угол: сравнительно медленного поворота базовой системы координат вдоль одной из угловых координат и быстрого двумерного регулярного периодического перемещения луча лазерного локатора (ЛЛ) относительно базовой системы координат. Новизна заявляемого способа заключается в том, что задают диапазон минимальных дальностей до подстилающей поверхности, соответствующий периоду сканирования, скорости полета и надежному обнаружению всех возможных препятствий, включая провода, тросы и т.п., используют технически реализуемые фрагменты траектории сканирования с управляемыми параметрами, которые могут изменять конфигурацию фрагментов траектории, в том числе их угловую ориентацию в вертикальной плоскости, при многократной реализации фрагментов за время полупериода обновления информации о дальностном поле, т.е. за время медленного поворота базовой системы координат в сторону левой или правой границы поля обзора, в процессе сканирования определяют требуемые параметры каждого следующего фрагмента траектории по результатам обработки имеющихся измерений углов и дальностей так, чтобы угловая ориентация этого фрагмента в вертикальной плоскости соответствовала попаданию прогнозируемых минимальных дальностей в заданный диапазон максимальных дальностей надежного обнаружения всех возможных препятствий, в процессе сканирования формируют сигналы управления исполнительными устройствами так, чтобы реализуемые в текущий момент времени фрагменты траектории имели параметры с минимально возможными отклонениями от требуемых параметров, обеспечивая тем самым в процессе сканирования отрицательную обратную связь в системе автоматического управления угловым положением по вертикали нижних участков, соответствующих минимальным дальностям на траектории сканирования, удерживая эти нижние участки траектории на таких углах наклона зондирующего луча, которые соответствуют заданному диапазону максимальных дальностей. Технический результат заключается в увеличении сектора сканирования по азимуту, что обеспечивает значительно больше возможностей при пролонгации безопасных траекторий полета. 3 ил.

Изобретение относится к области авиационного приборостроения и может быть использовано для выполнения полетных заданий, связанных с позиционированием летательного аппарата (ЛА) относительно наземного объекта при сближении с ним. Технический результат – повышение информативности. Для этого с помощью оптико-электронной системы переднего обзора выделяют объект, до которого необходимо измерить дальность, совмещая с его изображением прицельную метку, сопровождают выделенный объект на интервале времени наблюдения, который необходим для определения параметров углового положения вектора скорости ЛА, не изменяя угловую ориентацию поля зрения в инерциальном пространстве и анализируя изображения, формируемые датчиком изображения (ДИ) на той же последовательности кадров, которые соответствуют построению пар одновременно формируемых участков траекторий перемещения изображений опорных точек для определения параметров углового положения вектора скорости ЛА, используют для определения параметров вектор перемещения ЛА на интервале наблюдения углы ориентации вектора средней скорости относительно системы координат, связанной с полем зрения ДИ, за время наблюдения путем определения координат точки пересечения продолжений пары хорд, стягивающих наиболее длинные из выделенных (при определении направления вектора скорости в текущий момент времени) одновременно формируемых участков траекторий перемещения изображений опорных точек, и определения параметров углового положения линий, проходящих через полученную точку пересечения и центр проекции, который используется в ДИ для формирования оптического изображения, измеряют параметры угловых положений линии визирования объекта в начале и в конце интервала наблюдения относительно системы координат, связанной с полем зрения ДИ, путем измерения координат изображений объекта на фокальной плоскости в моменты формирования первого и последнего кадров анализируемой последовательности изображений и определения параметров угловых положений линий, проходящих через изображения объектов и центр проекции, который используется в ДИ для формирования оптического изображения, определяют, используя зарегистрированные навигационные данные, модуль вектора перемещения ЛА за время наблюдения, определяют дальность до объекта, используя модуль вектора перемещения ЛА за время наблюдения, измеренные параметры угловых положений линии визирования объекта и вектора перемещения ЛА за время наблюдения. 3 ил.

Изобретение относится к измерительным системам и может быть использовано при измерении курса летательного аппарата. Новизна способа заключается в том, что в оптико-электронной системе переднего обзора измеряют углы ориентации относительно строительных осей ЛА гиростабилизированного поля зрения телевизионного (ТВ) или тепловизионного (ТП) датчика изображений (ДИ), в котором оптическое изображение формируется в фокальной плоскости и считывается матричными чувствительными элементами, выделяют по ТВ/ТП изображениям опорные точки на поверхности Земли для их дальнейшего сопровождения, фиксируют траектории перемещения изображений опорных точек по фокальной плоскости ДИ, сопровождая их на последовательности кадров и регистрируя их координаты, моменты времени формирования соответствующих кадров, углы ориентации поля зрения ДИ относительно строительных осей ЛА, показания датчиков ускорений и формируемые с помощью СНС и ИНС оценки составляющих вектора скорости по строительным осям ЛА в эти моменты времени, выделяют на траекториях пары одновременно формируемых участков, для каждой пары выделенных участков траекторий определяют координаты точки схождения как точки пересечения продолжений хорд, стягивающих эти участки, определяют параметры угловых положений линий визирования, проходящих через полученные точки схождения, и центр проекции, который используется в ДИ для формирования оптического изображения, находя тем самым направления векторов средних скоростей ЛА на интервалах времени формирования выделенных пар участков траекторий движения изображений опорных точек по фокальной плоскости, используя зарегистрированные данные корректируют полученные направления векторов средних скоростей ЛА, приводя их к текущему моменту времени, определяют параметры углового положения вектора скорости ЛА в текущий момент времени относительно системы координат, связанной с полем зрения ДИ, как результат осреднения скорректированных параметров углового положения векторов средних скоростей ЛА, по найденным параметрам углового положения вектора скорости ЛА, углам ориентации поля зрения ДИ относительно строительных осей ЛА и углам крена и тангажа в текущий момент времени определяют углы, задающие направление полета относительно строительных осей ЛА и направление вектора путевой скорости ЛА относительно проекции продольной оси ЛА на горизонтальную плоскость (угол сноса). Технический результат заключается в повышении точности измерения курса летательного аппарата. 1 н.п. ф-лы, 3 ил.

 


Наверх