Патенты автора Муравьева Ольга Владимировна (RU)

Использование: для ультразвукового контроля электропроводящих цилиндрических объектов. Сущность способа заключается в том, что в контролируемой зоне цилиндрического объекта последовательно возбуждают ультразвуковые поперечные, продольные и рэлеевские волны с использованием электромагнитно-акустических преобразователей проходного и накладного типов, регистрируют серию импульсов ультразвуковых волн, многократно прошедших по сечению и периметру цилиндрического объекта, с помощью тех же электромагнитно-акустических преобразователей, по полученным осциллограммам определяют разность времен распространения между m-м и n-м импульсами, по значениям этих времен с учетом известных значений диаметра объекта, плотности материала объекта и поправочного коэффициента на скорость рэлеевской волны определяют скорости акустических волн и упругие модули по сечению объекта и в пределах поверхностного слоя, измеряют огибающие амплитуд серии импульсов ультразвуковых волн, по которым судят о наличии дефектов типа нарушения сплошности в объеме объекта и в пределах поверхностного слоя. Технический результат: расширение функциональных возможностей. 6 ил., 2 табл.

Использование: для акустического волноводного неразрушающего контроля труб. Сущность изобретения заключается в том, что осуществляют перемещение диагностического устройства вдоль трубопровода, периодически возбуждают ультразвуковые колебания. В выбранном интервале времени принимают ультразвуковые колебания от акустических нормальных волн, прошедших по стенкам трубопровода и отраженных от различных нарушений сплошности материала стенок, причем возбуждение и прием ультразвуковых колебаний осуществляют в нескольких точках. Выбирают эхосигналы по предварительно рассчитанным временам задержек для всех типов акустических нормальных волн, далее строят нормированные распределения их амплитуд, затем строят распределение величины, значения которой равны максимальным значениям амплитуд суммарных сигналов от разных типов акустических волн для совпадающих по координатам точек поверхности стенок трубопровода, и по этому распределению судят о наличии и величине дефектов в стенках трубопровода. При этом значения временных задержек корректируют на основе закономерности изменения скорости распространения акустических нормальных волн, возникающих вследствие наличия геометрической анизотропии и анизотропии свойств материала при различной толщине стенки трубопровода. Технический результат: повышение чувствительности и достоверности акустического контроля труб. 3 з.п. ф-лы, 10 ил.

Изобретение относится к области ультразвуковой метрологии, в частности к электромеханическим преобразователям звука. Ультразвуковой низкочастотный преобразователь содержит корпус, внутри которого установлены протектор, два пьезоэлемента и демпфер. Корпус снабжен верхней и нижней герметичными крышками, а в корпусе преобразователя установлена электроакустическая перегородка, разделяющая демпфер и протектор на две части, при этом на первой и второй частях протектора выполнены перпендикулярно ориентированные к основанию плоские или криволинейные выступы заданной длины, имеющие акустический контакт с контролируемым изделием, на которых закреплены пьезоэлементы. Измерительный модуль выполнен на основе микроконтроллера, снабженного микропроцессорным ядром, соединенного с помощью восьмиразрядной системной шины с FLASH-памятью программ, SRAM-памятью данных, многоканальным аналого-цифровым преобразователем и универсальными восьмиразрядными двунаправленными портами ввода-вывода. Технический результат - расширение функциональных возможностей устройства. 3 з.п. ф-лы, 5 ил.

Использование: для выявления и оценки параметров дефектов типа нарушения сплошности и неоднородности металла прутков. Сущность изобретения заключается в том, что осуществляют прозвучивание контролируемого прутка стержневой волной, измерение времени распространения стержневой волны от преобразователя до дефекта и обратно, пересчет измеренного времени в координату дефекта по длине прутка с учетом скорости распространения стержневой волны, определение коэффициента отражения стержневой волны от дефекта, определение дефектности прутка по результатам сравнения коэффициента отражения от дефекта с уровнем браковки, при этом также осуществляют дополнительное прозвучивание стандартного образца прутка стержневой и крутильной волнами, определение коэффициентов отражения стержневой и крутильной волн от искусственного отражателя в стандартном образце прутка, измерение координаты искусственного отражателя в поперечном сечении стандартного образца прутка, прозвучивание контролируемого прутка крутильной волной, определение коэффициента отражения крутильной волны от дефекта в контролируемом прутке, определение коэффициентов затухания стержневой и крутильной волн в контролируемом прутке, определение координаты дефекта в поперечном сечении прутка. Кроме того, дополнительно определяют дефектность прутка по результатам сравнения коэффициентов отражения крутильной волны от дефекта с уровнем браковки. Технический результат: расширение функциональных возможностей контроля и повышение достоверности результатов акустического волноводного контроля. 1 з.п. ф-лы, 8 ил.

Использование: для измерения акустического импеданса среды. Сущность изобретения заключается в том, что выполняют поочередное погружение акустического блока, выполненного в виде пьезопластины, возбуждающей колебания, в исследуемую и эталонную среды, расчет продольного и сдвигового акустических импедансов на основе численных значений коэффициентов для эталонной и исследуемой сред. Далее измеряют минимальное напряжение Ur, снимаемое с выхода акустического блока, соответствующую ему частоту резонанса fr, и частоту антирезонанса fa, определяемую при максимальном напряжении, снимаемом с выхода акустического блока при помещении его в исследуемую среду, эталонную среду и воздух, далее, рассчитав параметры эквивалентной электрической схемы пьезопластины, состоящей из емкости C1, параллельно соединенной с цепочкой последовательно соединенных емкости C, индуктивности L, активного сопротивления R, представленного в виде двух последовательно соединенных сопротивлений RI и RV, причем R=RI+RV, определив значения напряжений на емкости C и на активном сопротивлении R, определяют акустический импеданс исследуемой среды Z. Технический результат: повышение точности и достоверности измерения акустического импеданса среды. 2 н. и 2 з.п. ф-лы, 3 ил.

Использование: для определения среднего диаметра зерна металлических изделий посредством ультразвукового излучения. Сущность изобретения заключается в том, что определение среднего диаметра зерна DЗ металла выполняют с использованием градуировочного графика отношения U′ величины структурного шума USN к импульсу релеевской волны UR, описываемого линейной зависимостью DЗ=a+b·U′, где a и b - структурные коэффициенты. При этом устройство для определения среднего диаметра зерна металлических изделий дополнительно предварительно калибруют, проводя испытания n образцов, вычисляя n значений отношения U′ и измеряя с помощью металлографического светового микроскопа n соответствующих им значений среднего диаметра зерна DЗ испытываемых образцов. Технический результат: обеспечение возможности высокой точности определения среднего диаметра зерна металлических изделий. 2 н. и 2 з.п. ф-лы, 4 ил.

Использование: для определения коэффициента акустоупругой связи. Сущность изобретения заключается в том, что образец нагружают до заданного значения напряжения в материале и измеряют время распространения акустической волны в направлении, перпендикулярном направлению нагружения, при этом растягивают или сжимают образец до напряжения σ, меньшего предела пропорциональности материала, измеряют время t1 распространения акустической волны между двумя параллельными поверхностями образца, разгружают образец, соответственно сжимают или растягивают образец до напряжения σ, измеряют время t2 распространения акустической волны между указанными поверхностями образца и определяют коэффициент акустоупругой связи по заданному математическому выражению. Технический результат: повышение точности определения коэффициента акустоупругой связи материала.

 


Наверх