Патенты автора Шавелкина Марина Борисовна (RU)

Изобретение относится к нанотехнологии. В плазмотрон подают плазмообразующий поток, содержащий исходный углеродсодержащий материал и буферный газ. В качестве углеродсодержащего материала используют углеродсодержащую жидкость, которую вводят под давлением азота в струю буферного газа для формирования плазмообразующего потока при соотношении углеродсодержащая жидкость : буферный газ, составляющем 1:(3÷5), определяемом с помощью спектрального анализа. Для конверсии в плазменной струе сформированный поток в виде аэрозоля подают в разрядный промежуток плазмотрона при пониженном давлении. Продукты высокотемпературной диссоциации подвергают резкому охлаждению. Изобретение позволяет осуществить синтез графена без использования подложки, применения систем перевода жидкости в парообразное состояние, переноса синтезированного графена и его очистки от нежелательных примесей и тем самым упростить процесс. Кроме того, снижаются требования к исходному сырью за счёт использования широкого спектра углеродсодержащих жидкостей, в том числе отходов. 1 ил., 3 пр.

Изобретение может быть использовано в топливных элементах, литий-ионных батареях, суперконденсаторах, электросорбционных установках очистных сооружений. Углеводород из ряда (CnH2n+n), например метан, используемый в качестве источника углерода, подают в термическую плазму предварительно смешанным с азотом в массовых соотношениях от 1:10 до 1:5 и обрабатывают в термической плазме, формируемой в плазмотроне, при пониженном давлении 300-700 Торр. Полученную парогазовую смесь на выходе из плазмотрона резко охлаждают до 300-600°С. Изобретение позволяет получить допированные азотом графеновые пластины, содержащие 80-92 ат.% углерода, без использования подложек и сложного оборудования. 2 ил., 7 пр.

Изобретение относится к области нанотехнологий и может быть использовано при получении элементов памяти, наноэлектрических проводов, электрических и магнитных материалов. В реакторе создают объемную термическую плазму и вводят в нее углеродсодержащий материал - сажу или графит - и катализатор или несколько катализаторов, выбранных из группы, включающей соединения Ni, Со, Fe, Y. В качестве рабочего газа используют один из гелия, аргона, азота или их смесь. Соединения Ni, Со, Fe, Y используют при следующих атомарных соотношениях: 4:1=Ni:Y; Co:Y и 1:1=Ni:Со; Fe:Y. Смесь углеродсодержащего материала с катализатором подают в реакционную зону дуги закрученным потоком рабочего газа после стабилизации дуги. Изобретение позволяет упростить дуговой способ получения нанотрубок, снизить энергоемкость процесса и повысить его производительность. 3 ил., 4 пр.

Изобретение относится к машиностроению, в частности к железнодорожному транспорту, и может быть использовано при испытаниях пар трения по определению предельных нагрузок и триботехнических характеристик. Устройство содержит основание с закрепленной на нем стойкой и платформой, на которой установлен привод вращения вала и осевого его перемещения, узел нагружения образцов и систему измерения силы нагружения, дисковый контробразец, вал с размещенным на нем держателем образца, систему измерения силы трения. В качестве испытываемого образца устанавливается вырезанный темплет упрочненного гребня колеса после плазменной обработки толщиной 10-13 мм, в качестве контробразца - ролик, изготовленный из рельсовой стали, диаметром 40 мм и шириной 6 мм. Технический результат: повышение достоверности результатов оценки триботехнических свойств гребней колес, что обеспечит экономическую целесообразность выбранного режима и технологии поверхностного упрочнения колесных пар и надежность при эксплуатации без снижения работоспособности рельсов. 3 ил.

Изобретение относится к области нанотехнологий и может быть использовано для получения композиционных материалов с высокой электро- и теплопроводностью, добавок в бетоны и керамику, сорбентов, катализаторов. Углеродсодержащий материал испаряют в объемной термической плазме и конденсируют на поверхности мишени 9 и внутренней поверхности коллектора 7. Используют плазмотрон 3, включающий соосно расположенные электроды: стержневой катод 4 и выходной анод 5, имеющий форму сопла. Газообразный углеродсодержащий материал 6 подают с плазмообразующим газом через вихревую камеру с каналами 2 и выбирают из группы, состоящей из метана, пропана, бутана. Дно коллектора выполнено с отверстием 8 для прохода газового потока. Изобретение позволяет снизить энергоемкость процесса, расширить виды используемого углеводородного сырья, упростить конструкцию устройства и обеспечить непрерывность процесса и его высокую производительность. 2 ил., 3 пр.

 


Наверх