Патенты автора Кравченко Андрей Альбертович (RU)

Изобретение относится к измерительной технике и может быть применено для непрерывного мониторинга утечек топлива (бензина, керосина, дизельного топлива, а также других легколетучих взрывоопасных жидкостей) и обнаружения повышения концентраций паров топлива в воздухе закрытых помещений, замкнутых объемах (подземных сооружениях и коммуникациях). Изобретение от известного отличается тем, что в устройство для определения утечек взрывоопасных жидкостей введены вторая ячейка детектирования, состоящая из последовательно соединенных пьезосенсора, частотомера и блока регистрации скорости изменения частоты колебаний; в каждой из ячеек блок регенерации пьезосенсора; а также последовательно соединенные логический элемент «ИЛИ» и блок управления, выход которого соединен с объединенными входами блоков регенерации пьезосенсора первой и второй ячеек детектирования; логический элемент «И», выход которого соединен с объединенными вторым входом блока управления и входом исполнительного устройства, при этом выходы блока регистрации скорости изменения частоты колебаний первой и второй ячеек детектирования соединены с объединенными первыми входами логических элементов «И» и «ИЛИ» и объединенными вторыми входами логических элементов «И» и «ИЛИ» соответственно. Техническим результатом заявленного решения выступает минимизация вероятности ложных срабатываний устройства, уменьшение времени регенерации пьезосенсора после обнаружения утечки топлива. 1 ил.

Изобретение относится к машиностроению. Виброизолятор содержит размещенные ниже кабины симметрично с каждого ее бока по два рычага одинаковой длины. Рычаги расположены под одинаковым углом к вертикали, наклонены в противоположные стороны и шарнирно соединены с кабиной через верхние амортизирующие втулки. На раме параллельно продольной оси транспортного средства жестко закреплены два двухпоршневых гидроцилиндра одностороннего действия. Рычаги шарнирно соединены со штоками гидроцилиндров через нижние амортизирующие втулки и оси. Штоки гидроцилиндров шарнирно связаны с роликами. Ролики соединены с направляющими поверхностями, жестко закрепленными на раме. На кабине жестко закреплены два стопорных двухколодочных тормоза с гидравлическим управлением. Колодки тормоза соединены с барабанами, которые жестко установлены на двух поперечных осях, шарнирно соединенных с кронштейнами кабины. Наружные втулки жестко соединены с рычагами, а внутренние - с поперечными осями. Достигается снижение вибрации защищаемого объекта транспортного средства. 4 ил.

Изобретение предназначено для экспрессного анализа «на месте» жидких и твердых продуктов по концентрации их газов-маркеров. Устройство для экспресс-анализа качества продуктов включает один пьезосенсор с чувствительным пленочным покрытием для сорбции газов-маркеров, встроенный в держатель крышки ячейки детектирования, и устройства для возбуждения колебаний, фиксирования и отображения сигналов пьезосенсора. Ячейка детектирования устройства выполнена в виде съемного цилиндра с меткой, ограничивающей объем анализируемых образцов, цилиндр герметично соединяется с помощью насадки или резьбы с крышкой газоанализатора таким образом, чтобы пьезосенсор находился внутри цилиндра и не соприкасался с жидким или твердым образцом, а все части газоанализатора - миниатюрное устройство для возбуждения колебаний, микропроцессор для регистрации сигнала пьезосенсора и элемент питания (аккумулятор или батарейки) - расположены в одном корпусе над крышкой анализатора и соединены с сигнальным устройством, срабатывание которого определяется скоростью изменения сигнала пьезосенсора при сорбции газов-маркеров газовой фазы над жидким или твердым образцом, зависящей от их концентрации и свидетельствующей о качестве анализируемого объекта, на одной из боковых поверхностей блока питания размещены переключатель плавного установления порога срабатывания сигнального устройства, полученного предварительно по тест-образцу, кнопка включения и индикатор готовности устройства к работе, в нижней части корпуса расположены выходы для зарядного устройства и шины для соединения с регистратором, при этом время анализа жидких и твердых проб составляет 15-30 с, а восстанавливают и хранят пьезосенсоры в миниатюрной емкости с сорбентом на дне. Технический результат - увеличение ассортимента анализируемых продуктов, снижение энергопотребления, повышение мобильности и компактности предлагаемого устройства, сокращение времени анализа. 1 ил.

Изобретение относится к автомобильной технике, в частности к способам предпусковой подготовки подвижных объектов, находящихся на стоянке, и может быть использовано при подготовке подвижных объектов в условиях низких температур. Способ предпусковой подготовки подвижных объектов в условиях низких температур, основанный на централизованной подаче тепловой энергии к элементам разогрева подвижных объектов на стоянке, при этом после постановки подвижного объекта на стоянку задают номер стоянки, тип подвижного объекта и время его выезда из стоянки, измеряют температуру окружающего воздуха, температуру элемента разогрева с наибольшей теплоемкостью, определяют время начала разогрева и при достижении текущего времени времени начала разогрева подают тепловую энергию к элементам разогрева, а по достижении температуры элемента разогрева рабочей температуры прекращают подачу тепловой энергии. Изобретение обеспечивает повышение технологичности подготовки подвижных объектов в условиях низких температур и снижение затрат тепловой энергии. 1 ил.

Изобретение относится к области строительства, а именно к строительным конструкциям, стенам и перегородкам, поглощающим вредное для человека звуковое излучение. Звукопоглощающая панель пористого строения имеет на лицевой стороне объемные элементы, размещенные по квадратной решетке или в шахматном порядке. Объемные элементы выполняют в виде полости, имеющей на лицевой стороне панели входное отверстие для звуковой волны. В сечении объемного элемента плоскостью, перпендикулярной лицевой поверхности панели, стенки полости изготовлены в форме двух равноотстоящих друг от друга логарифмических спиралей. У входного отверстия первая спираль касается стенки полости, перпендикулярной лицевой стороне панели, а вторая спираль касается стенки полости, наклоненной под углом 45 градусов к лицевой стороне панели. Длина L полости, сделанной по контуру логарифмической спирали, принята равной четверти длины волны звука на низшей частоте в воздушной среде при стандартных атмосферных условиях. Коэффициент а, отвечающий за расстояние между витками спирали, определяется по формуле: L = ( 1 + l n 2 a ) ⋅ ( a ϕ 2 − a ϕ 1 ) / l n a , где φ1 и φ2 - соответственно начальное и конечное значения полярного угла. Изобретение позволяет повысить эффективность звукопоглощения при широком интервале частот акустического поля. 5 ил., 1 табл.

Изобретение относится к испытаниям материалов, а именно к способам определения динамических характеристик эластичных материалов. Сущность: испытываемые образцы эластомеров в виде цилиндрических втулок, надетых на валы рычагов, устанавливают в симметрично расположенные относительно оси столика вибратора отверстия приспособления. Приспособление обеспечивает возможность синхронного изменения и фиксации равных углов наклона рычагов к поверхности столика вибратора в интервале от 0° до 90°. Испытываемые образцы эластомеров вулканизацией или склеиванием жестко прикрепляют к валам рычагов и внутренней поверхности отверстий приспособления. Над испытываемыми образцами эластичного материала устанавливают груз. Приводят столик вибратора с нагруженными образцами эластомеров в вертикальное колебательное движение, плавно изменяют частоту колебаний и определяют частоту резонанса f, при которой амплитуда ускорения груза становится максимальной. По частоте резонанса f вычисляют динамический модуль упругости. Изменяя массу груза, определяют в перечисленной последовательности значения динамического модуля упругости. Испытания в той же последовательности проводят для других отобранных образцов рассматриваемой партии эластичных материалов, последовательно изменяют и фиксируют с помощью приспособления угол наклона рычагов к поверхности столика вибратора, при каждом установленном значении угла наклона рычагов определяют в перечисленной последовательности значение динамического модуля упругости, а для каждой партии материала - среднее арифметическое значение величин модуля упругости. Технический результат: возможность получения зависимости динамического модуля упругости ЕД эластомера от угла наклона рычагов к поверхности столика вибратора и массы груза. 2 ил.

Изобретение относится к испытаниям материалов, а именно к способам определения динамических характеристик эластичных материалов. Сущность: испытываемые образцы материала устанавливают на столик вибратора между верхней и нижней металлическими пластинами приспособления, обеспечивающего возможность изменения и фиксации угла наклона испытываемых образцов материала к поверхности столика вибратора в интервале от 0° до 90°. Испытываемые образцы материала вулканизацией или склеиванием жестко прикрепляют к верхней и нижней пластинам приспособления и над испытываемыми образцами материала устанавливают груз. Приводят столик вибратора с нагруженными образцами материала в вертикальное колебательное движение, плавно изменяют частоту колебаний и определяют частоту резонанса, при которой амплитуда ускорения груза на испытываемых образцах становится максимальной. По частоте резонанса по формуле вычисляют динамический модуль упругости. Изменяя массу груза, определяют в перечисленной последовательности значения динамического модуля упругости. Испытания в той же последовательности проводят для других отобранных образцов рассматриваемой партии эластичных материалов. Для каждой партии материала и конкретной массы груза вычисляют среднее арифметическое значение величин динамического модуля упругости. Технический результат: возможность получения зависимости динамического модуля упругости EД эластомера от угла наклона испытываемых образцов к поверхности столика вибратора и массы груза. 2 ил.

 


Наверх