Патенты автора Фасхутдинов Ленар Маликович (RU)

Изобретение относится к технике оптикоэлектронных измерений, в частности к способам и устройствам для измерения напряжения параметров переменных электрических полей. Волоконно-оптический измеритель напряжения содержит источник лазерного излучения, устройство оптической развязки, первый выход которого соединен с волоконно-оптическим световодом, а второй – с входом фотоприемника, первый чувствительный элемент на основе волоконной брэгговской решетки, установленный в измерительной камере так, чтобы находиться под действием ненулевой составляющей напряжения измеряемого электрического поля, и микропроцессорный блок управления и измерения напряжения, вход которого подключен к выходу фотоприемника, первый выход – к входу управления температурой лазера, второй выход – к входу управления длиной волны излучения лазера. Также в волоконно-оптический датчик измерения дополнительно введены второй чувствительный элемент на основе волоконной брэгговской решетки, установленный в измерительной камере так, чтобы находиться под воздействием нулевой составляющей напряжения измеряемого электрического поля, волоконно-оптический коммутатор, периодически соединяющий первый и второй чувствительные элементы с волоконно-оптическим световодом, и формирователь двухчастотного зондирующего излучения, установленный между лазером и входом устройства оптической развязки. Технический результат – создание волоконно-оптического измерителя напряжения с высокой точностью измерения напряжения переменного электрического поля. 3 ил.

Группа изобретений относится к области оптических измерений одновременно нескольких параметров изделий, в частности к устройствам для измерения величины износа и температуры изделий при трении. Устройство для измерения величины износа и температуры изделия при трении по его первому варианту и второму вариантам содержат, как минимум, два последовательно сформированных внутриволоконных оптических датчика величины износа и температуры изделия при трении на основе брэгговских решеток с участком измерительного волоконно-оптического световода между ними, не занятым брэгговской решеткой, равным по длине, как минимум, одному ее периоду. Кроме того, устройство содержит, например, как минимум, два последовательно расположенных внутриволоконных оптических датчика величины износа и температуры изделия при трении, выполненных на основе брэгговской решетки с фазовым π-сдвигом; интерферометра Фабри-Перо, построенного с использованием брэгговских решеток; брэгговских решеток, настроенных на одну рабочую длину волны; брэгговских решеток, настроенных на разные рабочие длины волн. Устройство для измерения величины износа и температуры изделия при трении по его второму варианту в отличие от его первого варианта содержит дополнительно введенный разветвитель, установленный за циркулятором в разрыв измерительного волоконно-оптического световода. К первому выходу разветвителя последовательно подключены первый отрезок и второй конец измерительного волоконно-оптического световода, а ко второму выходу разветвителя - второй отрезок измерительного волоконно-оптического световода, предназначенные для размещения в изделии, при этом на втором конце измерительного волоконно-оптического световода, предназначенного для размещения в изделии, сформирован, как минимум, один внутриволоконный оптический датчик величины износа и температуры изделия при трении на основе брэгговской решетки. Технический результат – повышение диапазона непрерывного измерения величины износа без существенного усложнения устройства. 2 н. и 6 з.п. ф-лы, 3 ил.

Устройство относится к технике оптических измерений, в частности к устройствам для измерения параметров физических полей (температура, давление, натяжение и т.д.) с помощью оптических датчиков. В заявленном устройстве для измерения параметров физических полей последовательно соединены источник четырехчастотного сигнала, первый волоконно-оптический кабель, оптический датчик, второй волоконно-оптический кабель; а также первый фотоприемник, первый амплитудный детектор, второй амплитудный детектор, контроллер определения параметра физического поля. При этом первый амплитудный детектор подключен к первому входу контроллера определения параметра физического поля, а второй амплитудный детектор подключен к его второму входу. При этом в устройство введены оптический разветвитель сигнала, два оптических избирательных фильтра, второй фотоприемник, два полосовых фильтра, при этом выход второго волоконно-оптического кабеля подключен к оптическому разветвителю сигнала, а первый выход оптического разветвителя сигнала через последовательно соединенные первый оптический избирательный фильтр, первый фотоприемник, первый полосовой фильтр подключен к первому амплитудному детектору, а второй выход оптического разветвителя сигнала через последовательно соединенные второй оптический избирательный фильтр, второй фотоприемник, второй полосовой фильтр подключен ко второму амплитудному детектору. Технический результат - повышение точности измерений и упрощение конструкции. 3 з.п. ф-лы, 2 ил.

Техническое решение относится к устройствам для измерения величины износа и температуры изделий при трении. Устройство для измерения величины износа и температуры изделия при трении содержит последовательно соединенные источник лазерного излучения, светоделитель и как минимум один измерительный волоконно-оптический световод, второй конец которого размещен в изделии на глубине Н, равной или меньшей расстояния R до трущейся поверхности. А также последовательно соединенные один передающий волоконно-оптический световод, детектор и контроллер определения величины износа и температуры изделия при трении. Причем первый конец передающего волоконно-оптического световода соединен со вторым выходом светоделителя. Кроме того, на отрезке длиной L измерительного волоконно-оптического световода в области его второго конца сформирован внутриволоконный оптический датчик величины износа и температуры изделия при трении. Причем источник лазерного излучения выполнен как источник непрерывного лазерного излучения, а светоделитель - как оптический циркулятор. Технический результат - повышение диапазона непрерывного измерения величины износа, приходящегося на одно волокно, повышение точности измерений величины износа и температуры, упрощение конструкции устройства. 3 з.п. ф-лы, 2 ил.

 


Наверх