Патенты автора Аветисян Юрий Арташесович (RU)

Изобретение относится к области биомедицинских диагностических технологий. Технический результат - повышение пространственного разрешения рентгеновских томографов пятого поколения, увеличение скорости пространственного сканирования рентгеновского пучка за счет использования матричного эмиттера и создания долговечного фотоэмиттерного матричного источника электронов для получения динамического пространственно-сканируемого рентгеновского излучения для томографии. Матрица фотокатода представляет собой плоскую поверхность из диэлектрика оксида кремния с прямоугольными элементами матрицы, на каждом из которых сформированы пленочные проводящие электроды из оксида индия-олова, соединенные с периодическими встречно-штыревыми планарными микролезвиями, на которых сформирована проводящая нанопленка алмазоподобного углерода (DLC), в которую внедрены золотые нанозвезды (GNS). В качестве лазерного источника света выбран импульсный полупроводниковый инжекционный лазер либо импульсный волоконный лазер с наносекундной длительностью и с длиной волны, соответствующей максимуму плазмонного резонанса золотых нанозвезд, а в качестве сканера лазерного пучка выбран 2D пространственный сканер. 8 ил.

Изобретение относится к области биомедицинских клеточных технологий. Предлагается способ лазерной локальной гипертермии клеток или микроорганизмов, включающий использование золотых нанозвезд, облучение клеток или микроорганизмов линейно-поляризованным лазерным излучением, согласно изобретению золотые нанозвезды осаждают на поверхность клетки или микроорганизмов из коллоидного раствора, облучение осуществляют импульсным излучением из диапазона длин волн 500-1200 нм, контролируют положение максимума и спектральную ширину плазмонного резонанса с помощью измерения спектральной зависимости коэффициента пропускания коллоидного раствора нанозвезд в видимом и ближнем ИК диапазоне, определяют добротность плазмонного резонанса, Q=λmax/Δλ1/2, как отношение длины волны λmax, соответствующей максимуму плазмонного резонанса, к его спектральной ширине Δλ1/2, соответствующей уменьшению плазмонного резонанса вдвое. 14 ил.

Изобретение относится к медицине, области нанотехнологий, в частности к усилению контраста и глубины зондирования при получении терагерцовых изображений раковых опухолей и патологий кожи с использованием наночастиц и лазерного нагрева. Способ включает введение плазмонно-резонансных композитных наночастиц в зондируемую биоткань и облучение зондируемой биоткани лазерным пучком с длиной волны 700-900 нм, совпадающей с максимумом поглощения наночастиц. Проводят облучение зондируемой биоткани последовательностью импульсов электромагнитных волн терагерцового диапазона, измерение коэффициента отражения электромагнитных волн терагерцового диапазона при пространственном сканировании зондируемой биоткани. При этом перед облучением проводят местную аппликацию путем наложения биологически совместимого агента в жидкой форме, обладающего гиперосмотическими свойствами: глицерина, или полиэтиленгликоля, или пропиленгликоля, или раствора глюкозы или фруктозы в спирте. Облучение лазерным пучком осуществляют в режиме последовательности фемтосекундных импульсов с периодом следования не более 10 нс, синхронизованных с последовательностью импульсов электромагнитных волн терагерцового диапазона так, чтобы в зондируемую область оба импульса приходили одновременно. Часть лазерного пучка для облучения зондируемой биоткани может быть использована для создания последовательности импульсов электромагнитных волн терагерцового диапазона. Способ обеспечивает повышение контрастности и глубины зондирования биообъектов, с пространственным разрешением не менее 100 мкм. 1 з.п. ф-лы, 3 ил.

 


Наверх