Патенты автора Левихин Артем Алексеевич (RU)

Изобретение относится к области пожаротушения, а именно к устройствам, обеспечивающим подачу огнетушащей жидкости на очаг возгорания. Газожидкостный ороситель содержит круглый корпус с газовой коллекторной полостью, охватывающей жидкостный коллектор, установленные с одной стороны корпуса штуцер подвода огнетушащей жидкости в жидкостный коллектор и патрубок подвода газа в газовую коллекторную полость, установленные с другой стороны корпуса сообщающиеся с газовой коллекторной полостью сверхзвуковые сопла и сообщающиеся с жидкостным коллектором каналы подачи огнетушащей жидкости. При этом сверхзвуковые сопла и каналы подачи огнетушащей жидкости равномерно расположены вокруг оси корпуса и установлены в несколько рядов на тороидальной поверхности корпуса с радиусом образующей окружности R, ось вращения которой совпадает с осью корпуса. В каждом ряду оси каналов подачи огнетушащей жидкости расположены между осями сверхзвуковых сопел. Сверхзвуковые сопла выполнены в виде конуса, расширяющегося в направлении истечения газа к центру образующей окружности тороидальной поверхности. Эти оси пересекают центр образующей окружности тороидальной поверхности, а также лежат в одной плоскости с осью корпуса. Изобретение позволило получить технический результат, а именно обеспечило повышение эффективности пожаротушения за счет увеличения концентрации капель малых размеров огнетушащей жидкости, распыленных взаимодействующими между собой сверхзвуковыми струями газа. 2 ил.

Изобретение относится к энергомашиностроению. Охлаждаемая лопатка газовой турбины включает в своем составе перо лопатки с проделанным в лопатке газовой турбины сквозным охлаждающим каналом. На внутренней поверхности пера лопатки нанесен эмиссионный слой, на расстоянии от которого располагается элемент - анод, состоящий из обращенного к эмиссионному слою слоя восприятия электронов и жаропрочной подложки анода. Расстояние между любой точкой эмиссионного слоя и любой точкой слоя восприятия электронов больше нуля при любом сочетании механических и тепловых нагрузок, действующих на перо лопатки при работе. Внутри жаропрочной подложки анода сформирован канал охлаждения, а полость, образованная эмиссионным слоем и слоем восприятия электронов, вакуумирована и герметизирована. В этой полости располагаются дистанцирующие элементы, выполненные из жаропрочного электронепроводящего материала, жаропрочная подложка анода находится в электрическом контакте с пером лопатки. Внутри полости, образованной эмиссионным слоем и слоем восприятия электронов, располагается легкоионизируемый химический элемент, количество которого определяется величиной давления паров в полости, образованной эмиссионным слоем и слоем восприятия электронов, обеспечивающим заданную плотность тока эмиссии и термоэмиссионного охлаждения при заданных рабочих температурах эмиссионного слоя. Технический результат заключается в обеспечении термоэмиссионого охлаждения лопатки. 4 з.п. ф-лы, 1 ил.

Изобретение относится к строительству трубопроводов и предназначено для теплогидроизоляции стыка предварительно изолированных труб тепловых сетей, водопроводов, нефтепроводов. Способ теплогидроизоляции стыка предварительно изолированных труб включает надевание термоусаживаемой муфты на защитную оболочку пенополиуретановой теплоизоляции одной из стыкуемых труб, сварку стыкуемых труб. Затем соединяют проходящие через пенополиуретановую теплоизоляцию сваренных труб провода системы оперативно-дистанционного контроля. При этом между торцами пенополиуретановой теплоизоляции сваренных труб формируют напылением послойно пенополиуретановую теплоизоляцию стыка. Слои пенополиуретановой теплоизоляции стыка наносят последовательно вокруг сваренных труб до их защитных оболочек. На пенополиуретановую теплоизоляцию стыка и примыкающие к ней концы защитных оболочек наносят адгезионный материал. Перемещают и устанавливают на адгезионный материал термоусаживаемую муфту. Термоусаживаемую муфту нагревают, обеспечивая уменьшение размеров термоусаживаемой муфты и активацию адгезионного материала, одновременно герметично соединяя термоусаживаемую муфту, пенополиуретановую теплоизоляцию стыка и концы защитных оболочек. Изобретение позволило получить технический результат, а именно обеспечило повышение качества пенополиуретановой теплоизоляции стыка за счет равномерного вспенивания и отверждения реакционной смеси, а также улучшение герметичности гидроизоляции стыка. 1 ил.

Изобретение относится к области теплотехники, а конкретно к конструктивным элементам теплообменного оборудования различного назначения. Поверхность теплообмена содержит последовательно чередующиеся по направлению потока выступы. С целью интенсификации теплообмена, каждый выступ выполнен в виде четырехугольной призмы высотой h=(1,5-2)δ, где δ - толщина пограничного слоя потока. Одинаковые основания четырехугольной призмы выполнены в виде равнобедренной трапеции. Перпендикулярные основаниям четырехугольной призмы вихреобразующие ребра находятся на ее передней грани, проходящей через большую сторону равнобедренной трапеции размером b, обращенную навстречу потоку и перпендикулярную направлению потока. Задняя грань четырехугольной призмы, проходящая через меньшую сторону равнобедренной трапеции, параллельную большей стороне равнобедренной трапеции, имеет размер ƒ=(0,2-0,5)b. Четырехугольные призмы расположены в шахматном порядке с шагом ƒ между вихреобразующими ребрами соседних четырехугольных призм, расположенных перпендикулярно направлению потока, и для обеспечения интенсивного вихреобразования с шагом S=(12-14)h между передними гранями соседних четырехугольных призм, расположенных по направлению потока. Технический результат - повышение эффективности теплообмена между потоком и поверхностью за счет интенсивного вихреобразования в пограничном слое потока. 2 ил.

Изобретение относится к стендам для исследования и испытаний коррозионных и прочностных свойств лопаток газотурбинных двигателей, эксплуатируемых на море. Стенд для коррозионно-прочностных испытаний лопатки газотурбинного двигателя содержит последовательно соединенные на основании газогенератор с каналом подвода горючего, с каналом подвода окислителя и с трубой отвода высокотемпературного газа, сообщающейся через патрубок с испытательной камерой, в которой установлено приспособление нагружения испытываемой лопатки осевым усилием и крутящим моментом, приспособление нагружения имеет динамометр для измерения осевого усилия и динамометр для измерения крутящего момента, испытательная камера сообщается с расположенным вниз по потоку, после приспособления нагружения, газоходом для отвода отработанного газа, при этом в канале подвода горючего установлен регулятор расхода горючего, в канале подвода окислителя установлен регулятор расхода окислителя, в трубе отвода высокотемпературного газа выполнен канал подачи охлаждающего газа, в канале подачи охлаждающего газа установлен регулятор расхода охлаждающего газа, за каналом подачи охлаждающего газа вниз по потоку установлены измеритель давления и измеритель температуры, в патрубке выполнен канал подачи соляного раствора в поток газа, в котором установлен регулятор расхода соляного раствора, в испытательной камере установлены перед приспособлением нагружения входной датчик температуры и входной датчик давления, а после приспособления нагружения - выходной датчик температуры и выходной датчик давления, на установленной в приспособлении нагружения испытываемой лопатке закреплены термопары и тензорезисторы, трубопровод внешнего водяного охлаждения с насосом и теплообменником проходит по газогенератору, патрубку, испытательной камере и газоходу для отвода отработанного газа. Техническим результатом изобретения является расширение функциональных возможностей стенда. 1 ил.

Изобретение относится к способу лазерного послойного синтеза объемного изделия с внутренними каналами и может быть использовано в авиационной и ракетной технике. Способ включает создание виртуальной модели объемного изделия с внутренними каналами с помощью системы трехмерного геометрического моделирования и лазерный послойный синтез объемного изделия спеканием или сплавлением поперечных слоев материала. Создают виртуальную модель объемного изделия с элементами внутренних каналов, которую разделяют на модель основы с каналами, получаемыми механической обработкой, и по меньшей мере одну модель фрагмента с каналами, получаемыми послойным лазерным синтезом. Затем по модели основы изготавливают механической обработкой монолитное основание с элементами внутренних каналов. На полученном монолитном основании достраивают по фрагменту модели с ответными элементами внутренних каналов лазерным послойным синтезом объемное изделие с внутренними каналами из поперечных слоев материала. Технический результат заключается в повышении производительности лазерного послойного синтеза объемного изделия с внутренними каналами. 5 ил.

Изобретение относится к способу лазерного послойного синтеза объемных изделий из порошков и может быть использовано в авиационной и ракетной технике. Способ включает создание с помощью системы трехмерного геометрического моделирования виртуальной модели изготавливаемого объемного изделия. Разбивку виртуальной модели на тонкие поперечные слои. Лазерный послойный синтез объемного изделия спеканием или сплавлением поперечных слоев порошка. При этом толщину hсп поперечного слоя порошка определяют с учетом толщины hyc усадки поперечного слоя порошка при спекании или сплавлении из условия hсм=(hсп-hус)≤ПД, где ПД - поле допуска на номинальный профиль поверхности объемного изделия; hсм - толщина поперечного слоя сформированного материала. Образующая профиля поверхности объемного изделия проходит через среднюю линию поперечного слоя сформированного материала. Технический результат заключается в повышении производительности лазерного послойного синтеза объемных изделий из порошков. 2 ил.

Изобретение относится к области химии и может быть использовано для производства водорода путем парциального окисления углеводородов с различным химическим составом. Способ включает смешивание сырья с окислителем, преимущественно кислородом, и парциальное окисление сырья в камере сгорания проточного охлаждаемого реактора с получением парогазовой смеси, содержащей водород, моно- и диоксид углерода, водяной пар и побочные продукты реакции горения, которую увлажняют и охлаждают до заданной температуры путем впрыскивания воды в газовый поток и проводят двухступенчатую паровую каталитическую конверсию монооксида углерода с последующим выделением водорода. При этом предварительно очищенное от примесей серы углеводородное сырье нагревают, увлажняют водяным паром и смешивают с окислителем, парциальное окисление сырья проводят при давлении в камере сгорания 6,0-7,0 МПа, тепло парогазовой смеси используют для нагрева сырья и получения водяного пара, паровую каталитическую конверсию монооксида углерода проводят на единой каталитической композиции с использованием однотипного Cu-Zn-цементсодержащего катализатора в три ступени. Выделение водорода осуществляют последовательно охлаждением газовой смеси с отделением водяного конденсата, а затем дальнейшим охлаждением газовой смеси с отделением конденсата диоксида углерода. Технический результат заключается в предотвращении сажеобразования на выходе газогенератора, повышении объемной концентрации водорода на выходе газогенератора, повышении экономичности, обеспечении экологичности технологии очистки получаемого водорода и увеличении термического КПД установки по производству водорода. 1 ил., 6 табл., 6 пр.

Группа изобретений относится к способу получения водородсодержащего газа для производства метанола из углеводородных газов (метана, природного газа, попутных нефтяных газов, сланцевых газов) и устройству для осуществления способа, и могут быть использованы в химической, нефте- и газохимической отраслях промышленности, в том числе при создании малотоннажных газохимических производств. Способ включает раздельную подачу при повышенном давлении углеводородного газа, предварительно смешанного с водяным паром, и подогретого окислителя в форсуночную головку реактора в турбулентном режиме течения газов, смешивание смеси газов и парциальное окисление увлажненного углеводородного газа при температуре ниже 1400°C кислородом окислителя в камере горения реактора, начальное охлаждение водородсодержащего газа потоком воды, дальнейшее охлаждение водородсодержащего газа в первом теплообменнике, в котором осуществляется получение водяного пара для смешивания с углеводородным газом, охлаждение во втором теплообменнике, в котором осуществляется подогрев углеводородного газа, и охлаждение в котле-утилизаторе, в котором вырабатывается технологический пар для потребителя, затем подачу охлажденного после котла-утилизатора водородсодержащего газа в блок коррекции, в котором осуществляется частичная паровая каталитическая конверсия монооксида углерода с целью получения оптимального для синтеза метанола мольного соотношения Н2/СО≈2,1-2,4, далее охлаждение водородсодержащего газа в третьем теплообменнике-холодильнике, отделение жидкой фазы в сепараторе, подогрев отходящего после сепаратора сухого водородсодержащего газа в четвертом теплообменнике паром, вырабатываемым в третьем теплообменнике-холодильнике, и подачу на вход блока синтеза метанола. Группа изобретений обеспечивает эффективное получение водородсодержащего газа, требуемого для производства метанола, состава и параметров, исключение образования сажи и оксидов азота. 2 н. и 11 з.п. ф-лы, 1 ил., 7 табл., 7 пр.

Изобретение относится к области химии и может быть использовано при получении водорода из углеводородов. Способ получения водорода по технологии двухстадийного окисления углеводородного сырья включает первую стадию - парциальное окисление углеводородов при недостатке окислителя, на которой происходит смешение сырья с кислородом и сжиганием его в камере сгорания проточного охлаждаемого высокотемпературного реактора при высокой температуре (до 3000°C) и на высоких скоростях с получением парогазовой смеси, содержащей водород, моно- и двуокись углерода, воду и побочные продукты реакции горения, затем полученную смесь увлажняют и одновременно охлаждают до температуры от 300 до 700°C путем впрыскивания и распыления воды в газовый поток, и очистка смеси пропусканием ее через фильтры; и вторую стадию - паровое каталитическое окисление монооксида углерода, на которой конверсию монооксида углерода проводят последовательно в два этапа на соответствующих конверторах: первом, предназначенном для среднетемпературной конверсии монооксида углерода при температурах 300-700°C на соответствующем среднетемпературном катализаторе, с последующим дополнительным увлажнением, а затем на втором, предназначенном для низкотемпературной паровой конверсии монооксида углерода при температурах от 200 до 300°C на соответствующем низкотемпературном катализаторе. Изобретение позволяет получить повышенный выход водорода на единицу углеводородного сырья при большей химической однородности получаемого водородсодержащего газа и меньших затратах энергии на процесс, а также при уменьшенных габаритах технологической аппаратуры по сравнению с традиционными способами получения водорода. 1 з.п. ф-лы, 1 ил., 1 табл.

 


Наверх