Патенты автора Редьков Алексей Викторович (RU)

Группа изобретений относится к технологии получения полупроводниковых материалов и может быть использована при создании функциональных элементов полупроводниковых приборов. Функциональный элемент полупроводникового прибора представляет собой подложку из кремния со сформированной приповерхностной двухслойной карбидокремниевой структурой толщиной (0,5-5) мкм. Верхний слой имеет моно- или поликристаллическую структуру, а лежащий под ним переходный слой имеет нанопористую структуру, при этом на границе раздела между подложкой из кремния и переходным слоем имеется разуплотенный контакт за счет наличия уплощенных лакун, размер которых превышает размер пор в 2-3 раза. Также предлагается способ изготовления функционального элемента полупроводникового прибора, представляющего собой подложку из кремния со сформированной приповерхностной двухслойной карбидокремниевой структурой толщиной (0,5-5) мкм, характеризуется тем, что размещают подложку в вакуумную печь и осуществляют отжиг подложки при давлении <25 Па и температуре 1250-1400°С в течение 1-150 мин, сопровождающийся откачкой образующихся паров кремния из реакционной зоны, после чего в печь подают СО и/или СО2 и обеспечивают формирование упомянутой приповерхностной двухслойной карбидокремниевой структуры протеканием термохимической гетерогенной реакции кремния с СО и/или СО2. Достигаемый технический результат заключается в увеличении толщины слоя SiC до 0,5-5 мкм и придании слою SiC особой структуры, что позволит расширить сферу применения функционального элемента. 2 н. и 1 з.п. ф-лы, 5 ил.

Группа изобретений относится к области разделения смеси газов, в частности к способу и устройству разделения смеси газов по молекулярной массе, и может быть применено для производства сверхчистых газов, востребованных современной промышленностью, а также в атомной отрасли для подготовки обогащенных изотопом смесей. Способ осуществляется путем пропускания исходной смеси газов через канал с обеспечением механического воздействия на канал, при котором внутренняя поверхность стенок канала изменяет свою форму во времени по закону бегущей волны. Устройство включает блок, обеспечивающий движение внутренней поверхности стенок канала или системы каналов по закону бегущей волны, в качестве которого могут быть использованы генератор поверхностных акустических волн или генератор механических колебаний. Изобретение обеспечивает возможность разделения газовых смесей с высоким коэффициентом разделения без использования подвергающихся износу деталей и сложных технических средств, а также разделение различных газовых смесей на одной и той же установке без замены рабочего тела, а только за счет управления характеристиками генератора механических колебаний. 2 н. и 12 з.п. ф-лы, 5 ил.

Изобретение относится к способам изготовления сенсорного модуля для получения спектров гигантского комбинационного рассеяния (ГКР). Способ включает четырехстадийную обработку поверхности плоского стеклянного основания. На первой стадии производят обогащение приповерхностного слоя стеклянного основания ионами металла – серебра, золота, меди или их любого сочетания в любых пропорциях. На второй стадии поверхность стекла приводят в контакт с шаблоном с заданным микропрофилем, являющимся анодом, с одной стороны и с плоским катодом, являющимся подложкодержателем, с другой стороны, помещают в камерную печь, в которой осуществляют нагрев стекла до температуры в диапазоне от 50°С до температуры ниже на 20…30°С переходной температуры стекла, одновременно с нагревом стекла к аноду прикладывают постоянное напряжение. Затем образец стекла инерционно охлаждают в камерной печи и снимают электрическое напряжение. На третьей стадии производят селективное травление модифицированного стеклянного основания в жидком травителе. На четвертой стадии стеклянное основание со сформированной системой микроканалов подвергают высокотемпературному отжигу в восстановительной атмосфере. Технической проблемой заявляемого изобретения является разработка способа изготовления сенсорного модуля для регистрации ГКР-спектра с высоким разрешением от веществ, характеризующихся как высокой, так и низкой ГКР-активностью, а также обеспечивающего возможность интеграции сенсорного модуля в устройства микрофлюидики. 3 н. и 6 з.п. ф-лы, 9 ил.

Группа изобретений относится к области термозащитных и антиокислительных покрытий и может быть использована для повышения химической инертности и температуры эксплуатации изделий, используемых в авиакосмической промышленности, топливо-энергетическом комплексе, в химической промышленности и др. Изделие характеризуется наличием основы из графита, в которой приповерхностный модифицированный слой состоит из графита основы и карбида кремния. При этом приповерхностный слой получен путем замещения части графита основы карбидом кремния, с образованием разветвленной дендритообразной кристаллической структуры карбида кремния внутри графита. Модификацию поверхности изделия осуществляют в вакуумной печи посредством обеспечения протекания термохимической гетерогенной реакции графита основы с расплавом кремния, контактирующим с поверхностью основы, и монооксидом углерода, который подают в вакуумную печь. Упомянутая реакция сопровождается замещением части графита основы карбидом кремния с образованием разветвленной дендритообразной кристаллической структуры карбида кремния внутри графита. Сформированный согласно заявляемому способу приповерхностный слой удерживается в основе за счет разветвленного дендритообразного внедрения карбида кремния внутрь графита основы, обеспечивая повышение прочностных характеристик, химической и термической стойкости изделий. 2 н. и 6 з.п. ф-лы, 9 ил.

Изобретение относится к способам получения наноструктурированных материалов, в частности к способу нанесения на поверхность стекол заданного рельефа с характерным латеральным разрешением порядка сотен нанометров. Способ микропрофилирования поверхности многокомпонентных стёкол включает двухстадийную обработку поверхности стекла, в котором на первой стадии поверхность стекла приводят в контакт с шаблоном с заданным микропрофилем, являющимся анодом, с одной стороны, и с плоским катодом, являющимся подложкодержателем, с другой стороны, помещают в камерную печь, в которой осуществляют нагрев стекла до температуры в диапазоне от 50°С до температуры ниже на 20…30°С переходной температуры стекла, одновременно с нагревом стекла к аноду прикладывают постоянное напряжение 0,1-10 кВ в течение 3-350 мин, после чего образец стекла инерционно охлаждают в камерной печи и снимают электрическое напряжение. На второй стадии образец стекла с модифицированной поверхностью подвергают плазмохимическому травлению при давлении 0,1-10 Па, при котором используют индуктивно-связанную плазму, образующуюся в смеси газов гексафторида серы и кислорода в соотношении 3:1 под воздействием радиочастотного газового разряда, при этом плазмохимическое травление ведут до достижения необходимой глубины заданного микропрофиля. Технический результат – возможность формирования в стекле нано- и микропрофилей с глубиной рельефа от десятков нанометров до нескольких микрон, геометрия которых соответствует негативному изображению используемого шаблона-электрода, сокращение времени нанесения профилей. 4 ил.

Группа изобретений относится к области термозащитных, оптических и антиокислительных покрытий и может быть использована для повышения химической инертности, температуры эксплуатации изделий и создания специальных оптических покрытий, используемых в авиакосмической промышленности, топливо-энергетическом комплексе, в химической промышленности, электронной промышленности и др. Изделие содержит основу из материала, температура плавления которого превышает 950°С, и двухслойное покрытие из карбида кремния на его поверхности. Двухслойное покрытие из карбида кремния состоит из нижнего слоя из карбида кремния с нанопористой губчатой структурой и расположенного на нем покрывающего слоя карбида кремния с моно- или поликристаллической структурой. Способ изготовления изделия, содержащего основу из материала, температура плавления которого превышает 950°С, с двухслойным покрытием из карбида кремния на ее поверхности, состоящим из нижнего слоя из карбида кремния с нанопористой губчатой структурой и расположенного на нем покрывающего слоя из карбида кремния с моно- или поликристаллической структурой. Предварительно на поверхность упомянутой основы изделия наносят слой-прекурсор из кремния, затем помещают изделие в вакуумную печь, после чего в вакуумную печь подают монооксид углерода и обеспечивают формирование упомянутого покрытия протеканием термохимической гетерогенной реакции нанесенного кремния с монооксидом углерода. Обеспечивается улучшение свойств покрытия из карбида кремния за счет характеристик его слоев, а именно нижнего слоя, обладающего демпфирующими свойствами, и верхнего слоя с повышенной степенью кристалличности и сплошности, при этом при формировании нескольких двухслойных покрытий повышается общая толщина покрытия. 2 н. и 4 з.п. ф-лы, 5 ил.

Изобретение относится к способам получения наноструктурированных материалов. Технический результат изобретения заключается в получении структурированных сплошных и наноостровковых пленок без использования сложных технических средств. В стекло методом ионного обмена вводят ионы металла. Перед отжигом на стекло накладывают электрод в виде трафарета заданной формы и прикладывают к нему электрическое напряжение. Отжигают стекло в восстановительной среде. 4 з.п. ф-лы, 2 ил.

 


Наверх