Патенты автора Ткачева Галина Николаевна (RU)

Изобретение относится к области геодезических измерений. Технический результат - повышение точности и достоверности способа обработки геодезических измерений за счёт получения максимально точных значений пространственных координат опорных пунктов планово-высотной основы (ПВО) и наблюдательной сети (НС) в режиме реального времени. Способ геодинамического мониторинга за смещениями блоков верхней части земной коры и деформационного состояния земной поверхности, при котором на контролируемой территории создают геодинамический полигон (ГДП), на котором выполняют ПВО в условной системе координат, выполняют высотную подготовку контролируемой территории путём создания единой высокоточной высотной основы по опорным пунктам ПВО и НС. В режиме реального времени передают полученные результаты в ПЭВМ, в которой дополнительно создают интерфейсную подсистему обработки и постоянного обновления геопространственных данных. Производят предварительную оценку степени геодинамической опасности на территории ГДП. Создают метрическую геопространственную цифровую среду в режиме реального времени для оперативной оценки геодинамического состояния и степени геодинамической опасности для объектов инфраструктуры. 1 ил.

Изобретение относится к вычислительной технике. Технический результат - повышение эффективности и достоверности геодезического мониторинга. Способ геодезического мониторинга деформационного состояния земной поверхности на территории разрабатываемых открытым способом крупных рудных месторождений с применением технологии лазерного сканирования, при котором на контролируемой территории создают планово-высотное обоснование (ПВО), выполняют геодезические измерения с применением технологии лазерного сканирования контролируемой территории с привязкой к системе координат ПВО, получают результаты геодезических измерений на период времени, которые передают в ПЭВМ с программным обеспечением обработки, отображения и преобразования геопространственных данных, и получают облако точек результатов сканирования, которое используют для создания цифровых метрических 3D моделей объектов и земной поверхности контролируемой территории, причем на контролируемой территории дополнительно создают геодинамический полигон (ГДП), на котором выполняют ПВО в условной системе координат с применением технологии высокоточного спутникового позиционирования. 2 ил.

Изобретение относится к области геодезического мониторинга и может быть использовано для геодезического мониторинга деформационного состояния земной поверхности в сейсмоопасных районах, где возведены сложные технологические инженерные объекты. Технический результат: повышение эффективности геодезического мониторинга деформационного состояния земной поверхности за счет повышения точности определения координат проектных контрольных точек и передачи в режиме реального времени геопространственных данных, а также обеспечения оперативного доступа к актуальной информации. 2 ил.

Изобретение относится к области создания трехмерных цифровых моделей. Технический результат – повышение достоверности и точности получаемых геопространственных данных за счет использования технологий лазерного сканирования в трехмерном пространстве. Способ получения, обработки, отображения и интерпретации геопространственных данных для геодезического мониторинга деформационного состояния инженерного содержит этапы, на которых создают планово-высотное обоснование (ПВО) в местной системе координат по опорным пунктам ПВО на контролируемом участке, где ПВО выполняют с применением технологии лазерного сканирования, где в качестве опорных пунктов ПВО служат базовые станции GPS, размещенные по определенной схеме вокруг контролируемого инженерного объекта; в контрольных точках на элементах конструкций инженерного объекта устанавливают геодезическую контрольно-измерительную аппаратуру (КИА), при помощи которой выполняют натурные наблюдения геодезическими методами за планово-высотными смещениями элементов конструкций инженерного объекта, при этом в упомянутую КИА дополнительно интегрируют цифровые датчики, с помощью которых получают геопространственные данные по координатам X,Y,Z элементов конструкций инженерного объекта. 1 ил.
Изобретение относится к области геодезического контроля в дорожно-строительной отрасли. При этом согласно изобретению планово-высотное обоснование (ПВО) на контролируемом участке автомобильной дороги создают методом мобильной сканерной съемки, где в качестве опорных пунктов ПВО служат базовые станции GPS, размещенные по обочинам автомобильной дороги через 2-3 километра и в сторону от оси автомобильной дороги не более 300 метров, а также твердые точки по сторонам обочин дорожного полотна в виде оснований столбов дорожных знаков и элементов обустройства автомобильной дороги. Динамический режим измерения параметров поперечного профиля поверхности покрытия дорожного полотна осуществляют с помощью мобильного лазерного сканирования контролируемого участка в прямом и обратном направлении, в результате чего определяют координаты по осям X, Y, Z точек отражения лазерного луча от поверхности дорожного полотна и опорных пунктов ПВО, которые идентифицируются на сканах. Получают скан, передают результаты сканирования в ПЭВМ и с помощью компьютерной программы регистрируют в ней сканы, получают фактическую цифровую векторную трехмерную модель поверхности дорожного полотна. В этой же программе виртуально моделируют поверхность дорожного полотна в заданном направлении, используя проектные значения соответствующих геометрических параметров, совмещают ее по опорным пунктам ПВО с полученной фактической цифровой векторной трехмерной моделью поверхности дорожного полотна и формируют с заданной дискретностью поверхность колеи. В автоматическом режиме определяют расхождения между значениями измеряемых параметров поперечного профиля поверхности покрытия дорожного полотна на основе полученных пространственных координат по оси Z точек отражения лазерного луча фактической цифровой векторной трехмерной модели и соответствующими значениями проектной цифровой векторной трехмерной модели поверхности покрытия контролируемого участка автомобильной дороги. Сравнивая полученные данные с соответствующими требованиями нормативных документов, определяют поперечную ровность поверхности дорожного полотна автомобильной дороги. Технический результат – повышение точности определения колейности поверхности покрытия дорожного полотна автомобильной дороги.

Изобретение относится к области геодезического контроля в дорожно-строительной отрасли и может быть использовано при строительстве или реконструкции автомобильных дорог. В заявленном способе выполняют планово-высотное обоснование (ПВО) контролируемого участка автомобильной дороги с помощью наземной или мобильной сканерной геодезической съемки в прямом и обратном направлении, где в качестве опорных пунктов ПВО служат базовые станции GPS, размещенные по обочине автомобильной дороги, а также твердые точки по сторонам обочины дорожного полотна в виде оснований столбов дорожных знаков и элементов обустройства автомобильной дороги. Выполняют наземное или мобильное лазерное сканирование контролируемого участка по опорным пунктам ПВО, в результате чего определяют пространственные координаты по осям X, Y, Z точек отражения лазерного луча от поверхности дорожного полотна и опорные пункты ПВО, которые идентифицируются на сканах. Получают скан, передают результаты сканирования в ПЭВМ и с помощью компьютерной программы регистрируют в ней сканы, получают фактическую цифровую точечную трехмерную (3D) модель автомобильной дороги и придорожной полосы, Далее выполняют маршрутное фотографирование контролируемого участка дорожного полотна и прилегающей территории на ширину до 200 метров от оси автодороги в прямом и обратном направлении на базе беспилотного летательного аппарата. Передают результаты фотографирования в ПЭВМ, с помощью компьютерной программы регистрируют в ней ортофотопланы и производят построение цифровой фотограмметрической модели поверхности дорожного полотна и прилегающих к нему участков. По опорным пунктам ПВО трансформируют ее пространственные данные в данные фактической цифровой векторной трехмерной (3D) модели и получают интегральную реалистическую цифровую векторную трехмерную (3D) модель контролируемого участка автомобильной дороги и придорожной полосы, в этой же программе моделируют эталонную трехмерную модель автомобильной дороги и придорожной полосы. Совмещают ее по тем же опорным пунктам ПВО с полученной интегральной реалистической цифровой векторной трехмерной (3D) моделью автомобильной дороги и придорожной полосы. Далее формируют с заданной дискретностью продольные сечения, в автоматическом режиме распознают расхождения между фактическими значениями контролируемых параметров геометрических элементов интегральной реалистической цифровой векторной трехмерной (3D) модели и значениями эталонной трехмерной модели контролируемого участка автомобильной дороги и придорожной полосы, сравнивая полученные данные, определяют линейные геометрические параметры автомобильной дороги и придорожной полосы по поверхности измеряемого слоя, необходимые при строительстве или реконструкции автомобильных дорог. Технический результат - определение достоверных и точных значений параметров геометрических элементов автомобильной дороги и характеристик придорожной полосы с применением технологии лазерного сканирования. 3 ил.

Изобретение относится к области геодезического контроля резервуаров вертикальных цилиндрических. В способе определения величины и направления крена резервуара вертикального цилиндрического геодезическим методом осуществляют горизонтальную разбивку внешней поверхности вышеупомянутого резервуара на пояса, в фиксированных местах по боковой внешней поверхности закрепляют специальные марки, производят построение цифровой точечной трехмерной (3D) модели внешней поверхности резервуара путем сканирования внешней поверхности резервуара при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 0,5 до 4 см, не менее чем с четырех сканерных станций на расстоянии от 15 до 25 м от резервуара, выполняют объединение сканов между собой. Сканирование и обработку, позволяющие определять и анализировать пространственное положение оси относительно вертикали каждого пояса резервуара, производят каждый раз для каждого пояса, путем вписывания оптимальных моделей цилиндров на различных уровнях резервуара, соответствующих высоте каждого пояса. Определяют значения частных кренов относительно вертикали для каждого пояса, причем центральная точка на оси вписываемых цилиндров является положением центра его масс и будет соответствовать фактическому положению оси резервуара на уровне каждого пояса, при этом за исходное значение отсчета частных кренов принимается положение и ось на уровне первого пояса, величину крена резервуара и его направление вычисляют на основе величин частных кренов на уровне последнего (верхнего) пояса. Технический результат заключается в повышении точности и достоверности определения величины и направления крена резервуара. 3 ил.

Изобретение относится к области геодезического контроля и может быть использовано для определения и восстановления положения горизонтальной оси любого сложного инженерного линейного объекта. В заявленном способе определения и восстановления положения горизонтальной оси линейного инженерного объекта по реперам планово-высотного обоснования производят геодезические измерения, в результате чего определяют вышеупомянутую горизонтальную ось и каждый раз, а после ее утраты, восстанавливают от этих же реперов. В данном способе на одном из реперов планово-высотного обоснования устанавливают наземный лазерный сканер (далее - НЛС), создают дополнительную местную сеть планово-высотного обоснования, в которой в качестве реперов используют твердые элементы конструкций линейного инженерного объекта, выполняют сканирование всех конструкций линейного инженерного объекта при помощи НЛС с линейной дискретностью шага сканирования в пределах от 2 до 10 мм и средней квадратической погрешностью 2 мм, в результате чего определяют координаты X, Y, Z точек отражения лазерного луча от поверхности всех конструкций линейного инженерного объекта, передают результаты сканирования (скан) в ПЭВМ, с помощью компьютерной программы регистрируют в ней скан и получают цифровую точечную метрическую трехмерную (3D) модель поверхности всех конструкций линейного инженерного объекта. Далее производят обработку данных результатов лазерного сканирования, определяют параметры фильтрации для удаления из облака точек лазерных отражений не подлежащих измерению посторонних объектов, производят их фильтрацию, выполняют привязку скана к заданной системе координат. В этой же программе виртуально моделируют вышеупомянутую горизонтальную ось, автоматически аппроксимируя векторный объект «горизонтальная ось» в данные НЛС и находя точки его соприкосновения с полученными данными НЛС, определяют трехмерные координаты X, Y, Z полученной виртуальной горизонтальной оси, принадлежащей линейному инженерному объекту. Технический результат - повышение точности определения и восстановления положения горизонтальной оси линейного инженерного объекта с применением наземного лазерного сканера. 3 ил.

Изобретение относится к области отображения геопространственной информации для создания трехмерных цифровых моделей объектов и территорий. Технический результат - обеспечение повышения оперативности доступа к актуальной информации на конкретную территорию. Способ получения, обработки и отображения геопространственных данных в формате 3D с применением технологии лазерного сканирования, при котором с помощью лазерного сканера выполняют сканирование заданной территории, определяют пространственные координаты X, Y, Z точек отраженного лазерного луча от объектов заданной территории, создают интерфейсную подсистему подготовки и постоянного обновления геопространственных данных в формате 3D и передают в нее результаты сканирования, получают цифровую метрическую точечную модель заданной территории в формате 3D, создают административную подсистему в виде сервера геопространственных данных в формате 3D и передают в нее вышеуказанную модель, создают систему поиска нужного фрагмента территории и доступа к нему, получают нужный фрагмент территории в виде цифровой метрической точечной модели заданной территории в формате 3D. 1ил.

Изобретение относится к области геодезического контроля резервуаров вертикальных цилиндрических стальных и может быть использовано при поверке стальных и железобетонных резервуаров вертикальных цилиндрических, предназначенных для хранения и проведения торговых операций с нефтью, нефтепродуктами и прочими жидкостями. В заявленном способе определения величины и направления отклонения наружного контура днища резервуара вертикального цилиндрического от горизонтали геодезическим методом по нижнему периметру вышеупомянутого резервуара производят сканирование по нижнему периметру внешней поверхности стенки и наружного контура днища резервуара при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 0,5 до 5 см. Определяют пространственные координаты по осям X, Y, Z точек отражения лазерного луча от поверхности резервуара в условной системе координат, далее выполняют регистрацию сканов между собой, производят обработку цифровых данных результатов наземного лазерного сканирования, производят построение цифровой точечной трехмерной (3D) модели нижнего пояса внешней боковой поверхности стенки и наружного контура днища вышеупомянутого резервуара. Моделируют проектную цифровую трехмерную (3D) модель наружного контура днища резервуара, используя их проектные значения, совмещают ее с полученной фактической цифровой векторной трехмерной (3D) моделью наружного контура днища резервуара, в автоматическом режиме определяют расхождения между фактическими и проектными значениями, получают величины отклонения от проектной формы контура днища вышеупомянутого резервуара. Технический результат - повышение точности и достоверности определения величины и направления отклонения наружного контура днища резервуара вертикального цилиндрического методом наземного лазерного сканирования. 2 ил.

Изобретение относится к области геодезического контроля вертикальных цилиндрических резервуаров. В заявленном способе определения величин деформаций стенки резервуара производят сканирование внешней поверхности резервуара при помощи наземного лазерного сканера. Определяют пространственные координаты по осям X, Y, Z точек отражения лазерного луча от поверхности резервуара в условной системе координат. Выполняют регистрацию сканов между собой, производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат. Передают полученную цифровую информацию в компьютерную программу, производят построение цифровой точечной трехмерной модели внешней поверхности стенки резервуара, далее выполняют развертывание полученной объединенной цифровой точечной трехмерной модели на плоскость, получают развертку в виде плоской точечной модели поверхности, в которой координата Z показывает удаление любой точки от вертикальной оси вышеупомянутого резервуара, а также взаимное отклонение от вертикали между точками, выполняют построение карты деформаций боковой поверхности стенки резервуара в виде изолиний, оценивают характер и величину деформаций стенки резервуара путем сравнения фактических значений деформаций стенки по оси Z с требованиями нормативных значений. Технический результат - повышение точности и достоверности определения величин деформаций стенки резервуара вертикального цилиндрического. 1 ил.

Изобретение относится к области геодезического контроля резервуаров вертикальных цилиндрических стальных и может быть использовано при поверке стальных и железобетонных резервуаров вертикальных цилиндрических. Технический результат - повышение точности и достоверности определения величины отклонения образующих стенок резервуара вертикального цилиндрического от вертикали. Cпособ определения величины отклонения образующих стенок резервуара вертикального цилиндрического от вертикали геодезическим методом по внешней поверхности вышеупомянутого резервуара заключается в том, что производят сканирование внешней поверхности резервуара при помощи наземного лазерного сканера не менее чем с четырех сканерных станций на расстоянии от 15 до 25 м от резервуара. Определяют пространственные координаты по осям Χ, Υ, Ζ точек отражения лазерного луча от поверхности резервуара в условной системе координат. Выполняют регистрацию сканов между собой, производят обработку данных результатов. Формируют образующие боковой поверхности резервуара с любым интервалом путем сечения цифровой векторной трехмерной (3D) модели внешней боковой поверхности резервуара вертикальной плоскостью, а на самой образующей формируют точки с любым шагом. Получают цифровую векторную трехмерную (3D) модель образующей в местах сечения. Выполняют упомянутые действия по всем образующим. Передают полученную цифровую информацию в компьютерную программу, в этой же программе моделируют проектную цифровую трехмерную модель образующих стенок резервуара, используя их проектные значения. Совмещают ее с полученной фактической цифровой векторной трехмерной (3D) моделью образующих стенок резервуара. В автоматическом режиме определяют расхождения между фактическими и проектными значениями, получают величины отклонения образующих стенок вышеупомянутого резервуара от вертикали. 2 ил.

Изобретение относится к области обработки и отображения пространственной информации для построения топографических карт. Технический результат - обеспечение отображения пространственной информации посредством определения точных значений геометрических параметров отображения объектов. Способ трехмерного картографирования, при котором выполняют сканирование заданного участка местности с привязкой к внешней системе координат, определяют пространственные координаты X, Y, Z точек отраженного лазерного луча от объектов заданного участка местности, формируют облако точек всех объектов заданного участка местности, передают результаты сканирования в ПЭВМ, регистрируют в ней сканы, получают фактическую цифровую точечную и векторную трехмерную модель заданного участка местности, на этой модели выбирают объект картографирования, определяют его границы, виртуально оптимизируют маршрут путем моделирования траектории движения внутри модели с помощью 3D навигации, выполняют предварительный анализ картографируемого участка, определяют параметры фильтрации для удаления из облака точек лазерных отражений не подлежащих картографированию объектов, проводят фильтрацию в автоматическом режиме. 2 ил.

 


Наверх