Патенты автора Малов Александр Николаевич (RU)

Изобретение относится к нефтедобывающей промышленности и может быть использовано на установках промысловой подготовки и налива нефти при переработке нефтегазоводяной эмульсии в товарную нефть. Мобильная установка подготовки и налива нефти включает основной технологический блок с установленными в нем и последовательно соединенными фильтром сетчатым грубой очистки входящего потока, теплообменником нагрева входящей газожидкостной смеси, трехфазным сепаратором, двухфазным сепаратором нефти, выход которого соединен через фильтр нефти с насосом подачи в устройство налива нефти в автоцистерны, а выход трехфазного сепаратора соединен через фильтр воды с насосом подачи в устройство налива воды в автоцистерны. Причем в линию подачи нагретой в теплообменнике газожидкостной смеси в трехфазный сепаратор встроен блок дозирования деэмульгатора. Установка содержит дополнительный блок подготовки теплоносителя, соединенный через фильтр и насос с выходом двухфазного сепаратора нефти и обеспечивающий циркуляцию теплоносителя через теплообменник. Изобретение позволяет увеличить мобильность установки с возможностью перемещения ее блоков-контейнеров любым видом транспорта, уменьшить металлоемкость установки за счет упрощения технологического оборудования подготовки нефти, а также осуществлять собственную автоматизированную систему налива воды и нефти. 1 ил.

Изобретение относится к промысловым установкам для переработки попутного нефтяного газа (ПНГ) и может быть использовано на нефтяных месторождениях для создания мобильных модульных комплексов. Установка ПНГ с выработкой пропан-бутановой фракции (ПБФ), стабильного газового конденсата (СГК) и сухого отбензиненного газа (СОГ) включает первый и второй запорно-регулирующие блоки, соединенные трубопроводами подачи попутного нефтяного газа первой и второй ступеней сепарации с блоком измерения расхода газа, выход которого по второй ступени сепарации соединен трубопроводом с фильтром-сепаратором и компрессором низкого давления. Выход по первой ступени сепарации объединен с выходом компрессора низкого давления и соединен с блоком адсорбции и компрессором высокого давления, выход которого соединен с колонной деэтанизации, содержащей первый ребойлер, выход которого соединен с колонной фракционирования, содержащей второй ребойлер, на выходе которого установлен резервуар СГК. Шлемовая часть колонны фракционирования соединена с рефлюксной емкостью и далее с резервуаром ПБФ. Выход шлемовой части колонны деэтанизации соединен с потоком СОГ из блока адсорбции и далее через блок измерения расхода газа поступает на выход. Изобретение позволяет увеличить глубину переработки ПНГ, повысить энергоэффективность. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области диагностики и контроля качества жидкостей. Способ определения примесей в жидких средах основан на сравнении спекл-изображений, полученных после прохождения лазерного пучка через пробу контролируемой жидкости, которая была выдержана некоторое время до полного оседания примесей, и через пробу контролируемой жидкости, находящуюся в возбужденном состоянии. Сравнение регистрируемых спекл-изображений происходит решающим устройством по средствам вычисления коэффициента корреляции между двумя полученными спекл-изображениями. На основе значения полученного коэффициента корреляции решающее устройство определяет наличие или же отсутствие примесей. Технический результат заключается в повышении точности определения примесей в жидких средах. 1 ил.

Изобретение относится к способу контроля состояния подповерхностной структуры оптически неоднородных объектов и может быть использовано при анализе вариаций плотности полупрозрачных твердых тел, жидкости и газов. Согласно способу целостность внутренней структуры полупрозрачных объектов определяют за счет измерения характеристик результирующего распределения интенсивности отраженного лазерного излучения в виде спекл-изображения. Для этого определяют разности между интенсивностями спекл-изображений, полученных при предыдущем и последующих этапах зондировании при условии, что мощность последующих зондирований соответствует условию Pn>Pn-1. Технический результат - повышение точности определения параметров подповерхностной структуры оптически полупрозрачных объектов и глубины залегания внутреннего дефекта контролируемого объекта. 2 ил.

 


Наверх