Патенты автора Панфилов Денис Александрович (RU)

Изобретение относится к области строительства, а именно к способу сопряжения стальной колонны с железобетонным фундаментом. Технический результат изобретения - повышение прочности и жесткости подколонника стальной колонны. Способ сопряжения стальной колонны с железобетонным фундаментом включает выполнение подколонника из металлической трубы, к верхней части которой закрепляют сварными швами укороченные анкерные болты-шпильки. Металлическую трубу заполняют бетоном высокой прочности, после чего на нее устанавливают опорную пластину базы колонны, выполненную в виде опорного кольца с отверстиями, через которые пропускают анкерные болты-шпильки и закручивают высокие гайки анкерных болтов-шпилек, присоединяя базу стальной колонны к подколоннику. 9 з.п. ф-лы, 4 ил.

Изобретение относится к области строительства, а именно к узлу сопряжения стальных колонн со сборно-монолитными железобетонными фундаментами. Технический результат – повышение прочности и жесткости подколонника стальной колонны. Узел сопряжения включает подколонник с анкерными болтами для крепления базы колонны. Подколонник выполнен в виде металлической трубы, заполненной конструктивным бетоном высокой прочности. Анкерные болты выполнены в виде укороченных анкерных болтов-шпилек, закрепленных с помощью сварного шва в верхней части металлической трубы, а опорная пластина базы колонны выполнена в виде опорного кольца с отверстиями для пропуска анкерных болтов-шпилек, оборудованных высокими гайками и упругими шайбами. 9 з.п. ф-лы, 4 ил.

Изобретение относится к области строительства железобетонного фундамента стаканного типа под сборную колонну здания. Фундамент под колонну включает железобетонный подколонник стаканного типа, армированный пространственным каркасом, и сопряженную с ним фундаментную плиту. Подколонник выполнен из типового сборного железобетонного кольца, установленного в качестве несъемной опалубки на фундаментную плиту и заполненного бетоном замоноличивания с предварительной установкой по его центру опорного столбика, соединенного с фундаментной плитой. Пространственный каркас расположен между опорным столбиком и кольцом, а высота опорного столбика определена по уравнению где hck и hc - высота железобетонного кольца и высота стакана подколонника, мм. Технический результат состоит в повышении прочности и жесткости фундамента под колонну, снижении трудозатрат на изготовление железобетонного фундамента на 30% и более, сокращении объема нового бетона на 30-50% для заполнения подколонника фундамента, повышении надежности работы фундамента колонны за счет надежного защемления железобетонной колонны здания в фундаменте, сокращении срока возведения железобетонного фундамента под колонну, повышении экономичности расходования изделий и материалов на изготовление фундамента стаканного типа. 13 з.п. ф-лы, 4 ил.

Изобретение относится к области пожарной безопасности зданий и касается способа конструктивной огнезащиты чугунной опоры здания. Элементы конструктивной огнезащиты прикрепляют вплотную к несущему стержню опоры. Выявляют марку серого чугуна, интенсивность силовых напряжений в сечении несущего стержня чугунной опоры и критическую температуру нагрева чугуна по признаку термопрочностного разрушения опоры здания. Толщину конструктивной огнезащиты заранее определяют с учетом теплофизических свойств ее материалов и условий нагрева несущего стержня чугунной опоры при пожаре заданной продолжительности. Техническим результатом изобретения является повышение надежности крепления конструктивной огнезащиты, повышение предела огнестойкости чугунной опоры, снижение риска обрушения чугунных опор здания в начальной стадии пожара. 7 з.п. ф-лы, 2 ил.

Изобретение относится к области пожарной безопасности зданий, в частности может быть использовано при изготовлении конструктивной огнезащиты чугунной опоры здания. Техническим результатом изобретения является повышение надежности крепления элементов опоры и конструктивной огнезащиты, повышение предела огнестойкости чугунной опоры, снижение риска взрывоопасного разрушения чугунной опоры в начальной стадии пожара. Толщина слоя огнезащиты заранее определена с учетом теплофизических свойств ее материалов, условий нагрева элементов чугунной опоры при пожаре и нормативного предела огнестойкости опоры здания. 9 з.п. ф-лы, 5 ил.

Изобретение относится к области пожарной безопасности: к исследованию параметров горения твердых веществ, строительных материалов и деревянных конструкций, в частности к определению скорости обугливания деревянных сжатых элементов в условиях пожара в здании. Заявлен способ испытания деревянного сжатого элемента без огневого воздействия неразрушающими методами по комплексу единичных показателей качества деревянного сжатого элемента. Для этого определяют положение деревянного сжатого элемента в пространстве здания, геометрические размеры деревянного сжатого элемента, условия обгорания опасного сечения деревянного сжатого элемента в условиях пожара, критическую толщину слоя обугливания, среднюю плотность, прочность и влажность древесины в естественном состоянии. Искомую величину скорости обугливания сечения деревянного сжатого элемента определяют по аналитическому уравнению. Описание процесса обгорания деревянного сжатого элемента в условиях пожара для оценки скорости обугливания критического сечения представляют математической зависимостью, которая учитывает положение обогреваемых граней деревянного сжатого элемента в пространстве здания, массивность сечения, фактическую влажность, среднюю плотность и прочность древесины на сжатие. Технический результат - возможность определения скорости обугливания сечения деревянного сжатого элемента без огневых испытаний, повышение достоверности контроля качества строительной древесины, деревянных сжатых элементов конструкций и неразрушающих испытаний. 5 з.п. ф-лы, 2 ил.

Изобретение относится к области пожарной безопасности зданий. Предложен способ определения временного показателя пожароустойчивости изгибаемого элемента под испытательной нагрузкой в условиях стандартного теплового воздействия. Для этого неразрушающими испытаниями производят поверку единичных показателей качества изгибаемого элемента, затем измеряют опасное сечение, выявляют форму изгибаемого элемента, породу и сорт древесины, схему обогрева опасного сечения при пожаре. Устанавливают предельную глубину обгорания поперечного сечения изгибаемого элемента и, используя полученные показатели качества элемента, вычисляют величину временного показателя пожароустойчивости изгибаемого элемента. Описание процесса сопротивления изгибаемого элемента представлено аналитической зависимостью, которая учитывает размеры и геометрические характеристики поперечного сечения, величины погонной испытательной нагрузки на изгибаемый элемент, расчетную длину пролета изгибаемого элемента, нормативное сопротивление древесины на изгибаемый уровень ответственности конструкции здания; предельную глубину обгорания сечения элемента. Технический результат - исключение огневых испытаний деревянных изгибаемых элементов в здании, расширение технологических возможностей оценки пожароустойчивости различно нагруженных изгибаемых элементов любых размеров, возможность проведения испытания деревянных конструкций на пожароустойчивость без их разрушения и без нарушения функционального процесса в здании. 9 з.п. ф-лы, 2 ил.

Изобретение относится к области пожарной безопасности: к исследованию параметров горения твердых веществ, строительных материалов и деревянных конструкций, в частности к определению скорости обугливания деревянных сжатых элементов в условиях пожара в здании. Согласно заявленному изобретению осуществляют испытание деревянного сжатого элемента без огневого воздействия неразрушающими методами по комплексу единичных показателей качества деревянного сжатого элемента. Для этого определяют положение деревянного сжатого элемента в пространстве здания, геометрические размеры деревянного элемента, условия обгорания опасного сечения деревянного элемента в условиях пожара, критическую толщину слоя обугливания, среднюю плотность, прочность и влажность древесины в естественном состоянии. Искомую величину скорости обугливания сечения деревянного сжатого элемента определяют по аналитическому уравнению (1). Описание процесса обгорания сжатого элемента в условиях пожара для оценки скорости обугливания сечения представляют математической зависимостью, которая учитывает положение обогреваемых граней деревянного сжатого элемента в пространстве здания, массивность сечения, фактическую влажность, среднюю плотность и прочность древесины на сжатие. Технический результат - возможность определения скорости обугливания сечения деревянного сжатого элемента без огневых испытаний, повышение достоверности контроля качества строительной древесины, деревянных сжатых элементов конструкций и неразрушающих испытаний, снижение экономических затрат на испытание. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области пожарной безопасности: к исследованию параметров горения твердых веществ, строительных материалов и деревянных конструкций, в частности к определению скорости обугливания деревянных изгибаемых элементов в условиях пожара в здании. Согласно заявленному изобретению осуществляют испытание деревянного сжатого элемента без огневого воздействия неразрушающими методами по комплексу единичных показателей качества деревянного изгибаемого элемента. Для этого определяют положение деревянного изгибаемого элемента в пространстве здания, геометрические размеры деревянного изгибаемого элемента, условия обгорания опасного сечения деревянного изгибаемого элемента в условиях пожара, критическую толщину слоя обугливания, среднюю плотность, прочность и влажность древесины в естественном состоянии. Искомую величину скорости обугливания сечения деревянного изгибаемого элемента определяют по аналитическому уравнению (1). Описание процесса обгорания изгибаемого элемента в условиях пожара для оценки скорости обугливания сечения представляют математической зависимостью, которая учитывает положение обогреваемых граней деревянного изгибаемого элемента в пространстве здания, массивность сечения, фактическую влажность, среднюю плотность и прочность древесины на изгиб. Технический результат - возможность определения скорости обугливания сечения деревянного изгибаемого элемента без огневых испытаний, повышение достоверности контроля качества строительной древесины изгибаемых элементов конструкций и неразрушающих испытаний, снижение экономических затрат на испытание. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области пожарной безопасности зданий сооружений и может быть использовано для классификации железобетонных плит с защемлением по контуру. Сущность изобретения заключается в том, что испытание железобетонной плиты проводят без разрушения, по комплексу единичных показателей качества, оценивая их величину с помощью статистического контроля. Для этого определяют геометрические размеры железобетонной плиты, схему обогрева расчетного сечения в условиях пожара, размещение арматуры в сечении, глубину заложения и степень огнезащиты ее, показатель термодиффузии бетона, величину испытательной нагрузки на железобетонную плиту с защемлением по контуру и интенсивность напряжения в стержнях рабочей арматуры. Предел огнестойкости железобетонной плиты определяют по признаку потери несущей способности FU(R), используя аналитическое уравнение (1). При описании процесса сопротивления железобетонной плиты огневому воздействию стандартного пожара учитывают степень огнезащиты арматуры С, см, интенсивность ее напряжения Jσs (в пределах 0,1-1,0) и показатель термодиффузии бетона , мм2/мин, а также особенности армирования железобетонной плиты и статическую схему ее работы. Технический результат – обеспечение возможности определения проектной огнестойкости железобетонной плиты без натурного огневого воздействия и повышение достоверности статистического контроля качества и неразрушающих испытаний. 10 з.п. ф-лы, 4 ил.

Изобретение относится к области пожарной безопасности зданий и сооружений и может быть использовано для классификации монолитных железобетонных балочных плит перекрытий зданий по показателям сопротивления их воздействию высоких температур пожара. Сущность изобретения заключается в том, что испытание монолитной железобетонной балочной плиты здания проводят без разрушения, по комплексу единичных показателей качества, оценивая их величину с помощью статистического контроля. Для этого определяют геометрические размеры балочной плиты, схему обогрева расчетного сечения в условиях пожара, размещение арматуры в сечении, глубину заложения и степень ее огнезащиты, показатель термодиффузии бетона, величину испытательной нагрузки на монолитную балочную железобетонную плиту и интенсивность напряжения в стержнях продольной рабочей арматуры. Предел огнестойкости балочной плиты перекрытия определяют по признаку потери несущей способности FU(R), используя аналитическое уравнение (1); по признаку потери теплоизолирующей способности FU(J) - по степенной функции (2). При описании процесса сопротивления монолитной железобетонной балочной плиты огневому воздействию стандартного пожара учитывают степень огнезащиты арматуры С, см, интенсивность ее напряжения Jσc (в пределах 0,1÷1,0) и показатель термодиффузии бетона Dвт, мм2/мин, а также особенности армирования балочной плиты перекрытия и статическую схему ее работы. Технический результат – повышение точности определения фактической огнестойкости монолитной железобетонной балочной плиты перекрытия без натурного огневого воздействия, повышение достоверности статистического контроля качества и неразрушающих испытаний. 5 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к области пожарной безопасности зданий - огнестойкости их конструкций. Сущность изобретения заключается в том, что испытание многопустотной преднапряженной многопустотной железобетонной плиты проводят без разрушения, по комплексу единичных показателей качества. Для этого определяют геометрические размеры многопустотной железобетонной плиты, схему обогрева расчетного сечения в условиях пожара, размещение напрягаемой арматуры в сечении плиты, глубину заложения и степень огнезащиты высокопрочной проволоки, показатель термодиффузии бетона, величину испытательной нагрузки на железобетонную плиту и интенсивность напряжения в стержнях рабочей арматуры.Предел огнестойкости преднапряженной многопустотной железобетонной плиты определяют по признаку потери несущей способности, используя уравнение (1); по признаку потери теплоизолирующей способности - по степенной функции (2). Технический результат – повышении точности определения фактической огнестойкости преднапряженной многопустотной железобетонной плиты без натурного огневого воздействия, повышение достоверности статистического контроля качества и неразрушающих испытаний. 8 з.п. ф-лы, 3 ил.

Изобретение относится к области пожарной безопасности зданий, в частности к огнестойкости железобетонных элементов конструкций здания, и касается исследования и анализа качества растянутой арматуры с помощью тепловых средств при совместном воздействии нагрузки и высокой температуры стандартного пожара. Способ выявления сопротивления растяжению арматуры железобетонного элемента в условиях пожара включает проведение натурного осмотра железобетонного элемента, измерение его геометрических размеров, выявление схемы армирования, установление вида бетона и его теплотехнических характеристик, величины защитного слоя бетона и глубины залегания растянутой арматуры, установление вида и класса арматуры по прочности, ее нормативного сопротивления и величины критической температуры нагрева, выявление коэффициента изменения нормативного сопротивления нагретой арматуры на растяжение. При этом испытание железобетонного элемента проводят без разрушения по комплексу единичных показателей качества бетона и арматуры, а величину предельного нормативного сопротивления растяжению арматуры по огнестойкости выявляют по предельному нормативному сопротивлению растяжению арматуры по огнестойкости железобетонного элемента, равному произведению нормативного сопротивления растяжению арматуры и коэффициента надежности по арматуре. Технический результат выражается в повышении точности и экспрессивности определения степени огнезащиты арматуры, степени ее нагрева при заданной длительности стандартного пожара, в повышении быстродействия, в определении параметров, влияющих на поведение растянутой арматуры в условиях воздействия высокой температуры, в уменьшении требуемого объема оперативной памяти ЭВМ для расчета огнестойкости железобетонного элемента, в ресурсосбережении при огневых испытаниях. 8 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к области пожарной безопасности зданий и может быть использовано для классификации ограждающих конструкций зданий по их показателям сопротивления воздействию высоких температур при пожаре. Оценку огнестойкости ограждающей конструкции здания проводят без разрушения, по комплексу единичных показателей качества строительного элемента. Для этого определяют геометрические размеры ограждающей конструкции (плиты, стены), схему обогрева расчетного сечения в условиях пожара, показатель термодиффузии строительного материала конструкции, выявляют начальную температуру тела ограждающей конструкции, предельно допустимую температуру и критическую температуру нагрева необогреваемой поверхности ограждающей конструкции и по ним, используя соответствующее аналитическое уравнение, находят предел огнестойкости ограждающей конструкции по признаку потери теплоизолирующей способности - Fuτ, мин. Технический результат - повышение достоверности статистического контроля качества и неразрушающих испытаний ограждающей конструкции без натурного огневого воздействия, уменьшение требуемого объема оперативной памяти ЭВМ для расчета огнестойкости, снижение экономических затрат. 8 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к области пожарной безопасности зданий, в частности, оно может быть использовано при изготовлении огнезащищенной стальной балки с гофрированной стенкой. Техническим результатом изобретения является совершенствование конструкции огнезащиты стальной балки с гофрированной стенкой; повышение индустриальности изготовления огнезащитного покрытия и его крепления; повышение несущей способности стальной балки с гофрированной стенкой; снижение массы материалов облицовки и металла; повышение ресурсоэнергосбережения и производительности труда при устройстве огнезащиты. Технический результат достигается тем, что сварной двутавр балки имеет гофрированную стенку, торцы полок сварного двутавра с гофрированной стенкой защищены термозащитным поясом из минераловатных плит; обогреваемые при пожаре грани оборудованы минераловатной плитой и крупноразмерными гипсокартонными листами комплексной облицовки; полки составного двутавра по их торцам оборудованы термозащитными поясами; толщина термозащитного пояса балки с гофрированной стенкой определена по расчету; высота термозащитного пояса растянутой полки принята по условию h3=6⋅δs, где ds - толщина растянутой полки, мм; гофрированная стенка сварного двутавра с обеих сторон оборудована термозащитным слоем из минераловатной плиты толщиной, вычисленной по расчету, и слоем цементно-перлитового раствора, в зависимости от требуемого предела огнестойкости балки здания с гофрированной стенкой. 3 ил.

Изобретение относится к области пожарной безопасности зданий и сооружений. Предложен способ оценки огнестойкости стальной гофрированной стенки, растянутого и сжатого железобетонных поясов составной балки здания без нарушения ее пригодности по комплексу единичных показателей качества. Для этого назначают комплекс единичных показателей качества гофрированной стенки, растянутого и сжатого поясов; определяют величину проектной испытательной нагрузки и интенсивность силовых напряжений в металле гофрированной стенки и в рабочей арматуре растянутого и сжатого железобетонных поясов составной конструкции. Длительность сопротивления в условиях термосилового воздействия стальной гофрированной стенки, растянутого и сжатого железобетонных поясов составной конструкции определяют по аналитическим зависимостям (2), (10) и (14). Описание процесса сопротивления нагруженных элементов составной балки стандартному тепловому воздействию представляют математическими зависимостями, которые учитывают теплотехнические параметры, а также конструктивные особенности гофрированной стенки и армирования растянутого и сжатого железобетонных поясов. Технический результат - повышение точности показателей огнестойкости стальной гофрированной стенки, растянутого и сжатого железобетонных поясов составной балки без натурного огневого воздействия; а также повышение точности показателей проектной огнестойкости составной балки в целом и определение времени сопротивления огневому воздействию наименее слабого с точки зрения огнестойкости ее элемента. 7 з.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к области пожарной безопасности зданий, в частности, может быть использовано при изготовлении конструктивной огнезащиты сварного двутавра стальной балки здания. Способ определения пожарно-технических характеристик элементов и материалов комплексной облицовки стальной балки с гофрированной стенкой включает определение вида стального проката, марки стали и геометрических характеристик сварного двутавра стальной балки; выявление числа сторон поперечного сечения стальной балки, подвергаемых тепловому воздействию в условиях пожара; нахождение приведенной толщины металла элементов сварного двутавра и интенсивности силовых напряжений в металле; установление показателей термодиффузии изоляционного покрытия материалов облицовки; определение требуемой степени огнезащиты элементов сварного двутавра; нахождение требуемого предела огнестойкости стальной балки здания. Вначале выявляют наиболее слабый в статическом и тепловом отношении элемент сварного двутавра: гофрированную стенку, нижнюю и верхнюю полки, находят контрольную точку в сечении элемента сварного двутавра, выявляют вид эталонного материала и соответствующие ему материалы, составляющие комплексную облицовку; выявляют показатель условий нагрева контрольной точки, выбирают размеры гнутого профиля для полок сварного двутавра в виде швеллера и уголка для стальной балки, затем вычисляют приведенную толщину металла элемента сварного двутавра с усилением. Определяя требуемую степень огнезащиты элементов сварного двутавра стальной балки с гофрированной стенкой, находят оптимальные геометрические и пожарно-техническне характеристики элементов и материалов комплексной огнезащиты сварного двутавра стальной балки. Изобретение позволяет повысить точность выбора оптимальных по огнестойкости и достаточных для пожарной безопасности геометрических размеров элементов сварного двутавра стальной балки с гофрированной стенкой и материалов его комплексной облицовки, снизить расход стали и крупноразмерных листовых и плитных материалов облицовки, повысить ресурсосбережение в процессе проведения огнезащитной облицовки сварного двутавра стальной балки с гофрированной стенкой. 6 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к области пожарной безопасности зданий. При осуществлении способа испытание стальной балки с гофростенкой проводят без разрушения по комплексу единичных показателей качества, оценивая их величину с помощью статистического контроля. Для этого определяют геометрические размеры элементов сварного двутавра стальной балки, схему обогрева опасного сечения элемента сварного двутавра стальной балки в условиях стандартного испытания на огнестойкость, условия закрепления его концов; длину периметра обогрева сечения элемента сварного двутавра, величину испытательной нагрузки и интенсивность силовых напряжений в сечении каждого элемента сварного двутавра стальной гофростенкой балки. Описание процесса сопротивления элемента сварного двутавра стальной балки высокотемпературному воздействию стандартного испытания представлено математической зависимостью, которая учитывает влияние интенсивности силовых напряжений в сечении элемента сварного двутавра стальной балки от действия испытательной нагрузки и приведенную толщину металла сечения элемента сварного двутавра стальной балки с гофрированной стенкой. Предел огнестойкости стальной балки с гофростенкой определяют по длительности сопротивления огневому воздействию наиболее слабого в статическом и тепловом отношении элемента сварного двутавра. Достигается возможность определения огнестойкости стальной балки с гофростенкой без натурного огневого воздействия, повышение достоверности неразрушающих испытаний, уменьшение расхода металла на изготовление стальной балки, ускорение проведения испытаний. 6 з.п. ф-лы, 3 пр., 4 ил.

Изобретение относится к области пожарной безопасности зданий, в частности, оно может быть использовано для пожарно-технической классификации стальной термозащищенной гофробалки по показателям сопротивления воздействию пожара. Оценку огнестойкости стальной гофробалки проводят без разрушения по комплексу единичных показателей качества составных элементов сварного двутавра. Для этого определяют геометрические размеры нижней и верхней полок, гофрированной стенки, схему обогрева их сечений в условиях пожара, величину испытательной нагрузки и интенсивность силовых напряжений в сечениях составных элементов, марку стали, показатели термодиффузии материалов термозащиты. Описание процесса сопротивления термозащищенной гофробалки стандартному тепловому воздействию представлено математической зависимостью, которая учитывает влияние интенсивности силовых напряжений в сечении составного элемента от действия испытательной нагрузки, приведенную толщину металла сечения составного элемента, величину показателя термодиффузии материала термозащиты. Проектный предел огнестойкости гофробалки определяют, используя аналитические уравнения. Достигается возможность оценки огнестойкости стальной термозащищенной гофробалки здания без дополнительного натурного теплового воздействия, повышение достоверности неразрушающих испытаний строительных конструкций, уменьшение расхода металла на изготовление стальных гофробалок, ускорение проведения испытаний. 5 з.п. ф-лы, 5 ил., 1 пр.

Изобретение относится к области строительства, в частности к конструкциям гражданских, промышленных и общественных зданий и сооружений. Балка двутаврового сечения с гофрированной стенкой содержит полки и приваренную к ним стенку из металлического гофрированного листа с поперечным расположением гофров произвольной формы. При этом стенка состоит из двух или более параллельно расположенных соединенных между собой гофрированных листов, а полки выполнены сталежелезобетонными, состоящими из жесткой арматуры в виде рифленого листа металла и арматурного каркаса, включающего продольную арматуру и поперечную арматуру, которая обхватывает продольную арматуру, соединена с ней, а ее концы с загибом внутрь приварены к рифленому листу металла с отступом от стенки балки, равным не менее чем 50 мм. Технический результат состоит в повышении долговечности, огнестойкости, несущей способности и прочности балки с гофрированной стенкой на изгиб в двух плоскостях и на кручение, а также расширение сферы ее применения в строительстве. 13 з.п. ф-лы, 4 ил.

Изобретение относится к области пожарной безопасности зданий и сооружений и может быть использовано для классификации железобетонных балочных конструкций. Сущность изобретения заключается в том, что испытание железобетонной балочной конструкции здания проводят без разрушения, по комплексу единичных показателей качества, оценивая их величину с помощью статического контроля. Для этого определяют геометрические размеры балочной конструкции (плиты, ригеля), схему обогрева расчетного сечения в условиях пожара, размещение арматуры в сечении, глубину заложения и степень огнезащиты ее, показатель термодиффузии бетона, величину испытательной нагрузки на балочную конструкцию и интенсивность напряжения в стержнях продольной рабочей арматуры. Предел огнестойкости балочной конструкции определяют по признаку потери несущей способности (R), используя аналитическое уравнение (1); по признаку потери теплоизолирующей способности (J) - по степенной функции (2). При описании процесса сопротивления железобетонной балочной конструкции огневому воздействию стандартного пожара учитывают степень огнезащиты арматуры С, см, интенсивность ее напряжения Jσc и показатель термодиффузии бетона Ввm, мм2/мин, а также особенности армирования балочной конструкции и статическую схему ее работы. Технический результат – обеспечение возможности определения фактической огнестойкости железобетонной балочной конструкции без натурного огневого воздействия, повышение достоверности статического контроля качества и неразрушающих испытаний. 7 з.п. ф-лы, 2 ил.

Изобретение относится к области пожарной безопасности зданий и может быть использовано для классификации железобетонных колонн зданий по показателям сопротивления их воздействию пожара. Согласно заявленному способу испытание железобетонных колонн здания проводят без разрушения по комплексу единичных показателей качества, оценивая их величину с помощью статистического контроля. Для этого определяют геометрические размеры железобетонной колонны, схему обогрева опасного сечения в условиях пожара, степень армирования бетона и условия крепления; плотность, влажность и показатель термодиффузии бетона; величину испытательной нагрузки на огнестойкость, степень напряжения опасного сечения колонны, показатель надежности железобетонной колонны по назначению (уровню ответственности), условия обогрева опасного сечения колонны при пожаре, глубину залегания продольной арматуры, сплошности тела колонны и ее гибкости. Описание процесса сопротивления нагруженной железобетонной колонны огневому воздействию представляют математической зависимостью, которая учитывает наименьший размер поперечного сечения элемента, степень армирования αμs, интенсивность напряжения Jσo, нормативную прочность бетона сопротивлению на осевое сжатие Rbn и показатель термодиффузии бетона Dвm, мм2/мин, а также величину интегрального показателя безопасности железобетонной колонны. Предел огнестойкости железобетонной колонны определяют, используя аналитическое выражение. Технический результат – обеспечение возможности определения огнестойкости железобетонной колонны без натурного огневого воздействия, повышение достоверности статистического контроля качества и неразрушающих испытаний. 5 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к области строительства и может быть использовано при ремонте, усилении и реконструкции зданий, более конкретно для замены аварийного каменного столба. Технический результат заключается в повышении жесткостных, прочностных и деформативных характеристик каменной конструкции. Устройство для замены каменного столба содержит стойку временного крепления, выполненную в виде сердечника-порядовки с армокаменной обкладкой, и дополнительно содержит грузовой узел сопряжения вверху и опорный стык внизу. Грузовой узел сопряжения включает упорный башмак, грузовой винт, натяжную гайку и подкладную шайбу, упорный лист и соединенную сварным швом торцовую пластину, оборудованную отверстием с упорной резьбой на верхнем торце несущего сердечника-порядовки. Опорный стык несущего сердечника-порядовки содержит глухой анкер-болт, дюбель-болт и центрирующую прокладку-пластину. 17 з.п. ф-лы, 8 ил.

Изобретение относится к области строительства и может быть использовано при реконструкции, усилении и восстановлении сильно поврежденных несущих конструкций зданий, более конкретно для замены аварийной кладки столбов. Технический результат - обеспечение прочности и устойчивости каменных конструкций. При замене аварийного каменного столба здания стойку временного крепления представляют в виде несущего сердечника-порядовки, который обкладывают поперечно армированной колодцевой кладкой, несущий сердечник-порядовку выполняют из стального прокатного профиля или дерева и оборудуют его грузовым узлом. 12 з.п. ф-лы, 8 ил.

Изобретение относится к области пожарной безопасности зданий и сооружений, в частности оно может быть использовано для классификации железобетонных ферм зданий по показателям сопротивления их воздействию пожара. Сущность изобретения: испытание растянутых и сжатых элементов железобетонной фермы здания без разрушения по комплексу единичных показателей качества. Для этого назначают комплекс единичных показателей качества растянутых и сжатых элементов; определяют величину испытательной нагрузки и интенсивность силовых напряжений в рабочей арматуре. Предел огнестойкости растянутых и сжатых элементов определяют из соответствующих аналитических уравнений. Описание процесса сопротивления нагруженных элементов железобетонной фермы тепловому воздействию стандартного пожара представляют математическими зависимостями, которые учитывает интегральные теплотехнические и конструктивные параметры, а также особенности армирования растянутых и сжатых элементов. Технический результат заключается в повышении достоверности неразрушающих испытаний, расширении диапазона применения способа, приближении условий испытаний к реальным. 7 з.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к области пожарной безопасности зданий и сооружений. Сущность: осуществляют проведение технического осмотра, инструментальное измерение геометрических характеристик элементов фермы в их опасных сечениях; выявление условий опирания и крепления элементов фермы, схем обогрева их поперечных сечений; установление марки стали фермы, характеристик металла сопротивлению на сжатие и растяжение, определение величины нагрузки оценочного испытания на стальную ферму, схем ее приложения, интенсивности силовых напряжений в металле в опасных сечениях элементов стальной фермы, определение времени наступления предельного состояния по признаку потери несущей способности элементов стальной фермы под испытательной нагрузкой оценочного огневого испытания. Оценку огнестойкости стальной фермы здания проводят без натурного огневого воздействия неразрушающими методами испытаний, используя комплекс единичных показателей качества стальных конструкций. Назначают число и место расположения участков, в которых определяют единичные показатели качества, при этом технический осмотр дополняют определением группы однотипных стальных ферм. За единичные показатели качества принимают геометрические характеристики элементов фермы, степень напряжения и предел текучести металла, затем определяют интегральные конструктивные параметры: интенсивность нормальных силовых напряжений в поперечном сечении элементов стальной фермы в условиях оценочного огневого испытания; приведенную толщину металла поперечного сечения элементов стальной фермы, и, употребляя их, определяют проектное время сопротивления термосиловому воздействию каждого элемента стальной фермы по потере несущей способности, используя аналитическое выражение. Проектный предел огнестойкости стальной фермы (Fur, мин) определяют по длительности сопротивления до потери несущей способности наиболее слабого с точки зрения огнестойкости элемента (τus, min, мин) в условиях оценочного огневого испытания. Технический результат: возможность определения огнестойкости стальной фермы здания без натурного огневого воздействия, повышение достоверности статистического контроля качества и неразрушающих испытаний, уменьшение расходов металла на изготовление стальной фермы, сокращение сроков проведения испытаний, снижение экономических затрат. 15 з.п. ф-лы, 1 табл., 4 ил.

Изобретение относится к области строительства и может быть использовано при ремонте, усилении и реконструкции зданий и сооружений, более конкретно для исправления тяжелых повреждений и обеспечения пространственной жесткости каменных стен здания. Каменные стены существующего здания укреплены балочным напряженным поясом, который содержит продольные и поперечные тяжи в виде стальных прогонов и приспособление для их сочленения и натяжения, состоящего из анкерного уголка и крепежных болтов с натяжными гайками. Крепление выполнено с учетом обеспечения пространственной жесткости и несущей способности без демонтажа существующих конструкций эксплуатируемого здания. Технический результат состоит в повышении жесткостных, прочностных и деформативных характеристик каменной кладки. 11 з.п. ф-лы, 4 ил.

Изобретение относится к области строительства и может быть использовано при ремонте, усилении и реконструкции зданий и сооружений, более конкретно для исправления тяжелых повреждений и обеспечения пространственной жесткости каменных стен здания. Каменные стены существующего здания укреплены балочным напряженным поясом, содержащим продольные и поперечные тяжи в виде стальных прогонов и приспособление для их сочленения и натяжения, состоящего из анкерного уголка и крепежных болтов с натяжными гайками. Технический результат - повышение эксплуатационной надежности и пространственной жесткости стен вследствие рационального крепления сильно поврежденного здания. 13 з.п. ф-лы, 4 ил.

Изобретение относится к области пожарной безопасности при реконструкции и надстройках зданий, в частности оно может быть использовано для классификации кирпичных столбов с железобетонной обоймой по показателям сопротивления их воздействию пожара. Сущность изобретения: испытание кирпичных столбов с железобетонной обоймой проводят без разрушения по комплексу единичных показателей качества, оценивая величину фактического предела огнестойкости по потере несущей способности. Для этого определяют геометрические размеры кирпичных столбов и железобетонной обоймы, условия обогрева столбов, коэффициент продольного изгиба, классы бетона и арматурной стали, их сопротивление на сжатие, показатели термодиффузии материалов бетона обоймы и кирпичной кладки; величину нормативной нагрузки при испытании на огнестойкость, степень напряжения опасных сечений железобетонной обоймы и кирпичной кладки. Предел огнестойкости кирпичных столбов с железобетонной обоймой определяют по полипараметрическим зависимостям, описывающим процесс сопротивления каменной конструкции огневому воздействию. Достигается снижение трудоемкости, а также повышение безопасности и достоверности определения. 8 з.п. ф-лы, 2 пр., 1 табл., 2 ил.

Изобретение относится к области пожарной безопасности зданий, в частности оно может быть использовано для классификации каменных столбов, простенков и стен со стальными обоймами по показателям сопротивления их воздействию пожара. Сущность изобретения: испытание каменных столбов со стальной обоймой проводят без разрушения по комплексу единичных показателей качества, оценивая величину фактического предела огнестойкости по потере несущей способности. Для этого определяют геометрические размеры каменных столбов со стальной обоймой, условия опирания и обогрева конструкции, величину коэффициента продольного изгиба, показатели плотности, влажности, теплопроводности, теплоемкости и термодиффузии материала каменных столбов со стальной обоймой, процент армирования соединительными планками стальной обоймы; величину нормативных нагрузок при испытании на огнестойкость и степень напряжения опасных сечений каменной конструкции. Предел огнестойкости каменных столбов со стальной обоймой определяют по полипараметрической математической зависимости. Достигается снижение трудоемкости, повышение точности, достоверности, информативности и ускорение испытаний. 8 з.п. ф-лы, 3 прим., 3 ил.

Изобретение относится к области пожарной безопасности зданий, в частности оно может быть использовано для классификации кирпичных столбов и простенков по показателям сопротивления их воздействию пожара. Сущность изобретения: испытание кирпичных столбов проводят без разрушения по комплексу единичных показателей качества, оценивая величину фактического предела огнестойкости по потери несущей способности. Для этого определяют геометрические размеры кирпичных столбов с растворной обоймой, условия обогрева столбов, величину коэффициента продольного изгиба, показатели термодиффузии материала кирпичных столбов и раствора обоймы, процент косвенного армирования кладки; величину нормативных нагрузок при испытании на огнестойкость и степень напряжения опасных сечений кирпичных стен. Предел огнестойкости кирпичных столбов с растворной обоймой определяют по признаку потери несущей способности. Достигается повышение точности, надежности и достоверности, а также - упрощение и ускорение испытаний. 6 з.п. ф-лы, 2 ил., 1 табл., 2 пр.

 


Наверх