Патенты автора Архипова Анастасия Юрьевна (RU)

Изобретение относится к биотехнологии и медицине, а именно к области хирургии, и раскрывает способ повышения состоятельности кишечного анастомоза. Способ предполагает использование биодеградируемого имплантата на основе метакрилированного фиброина шелка и включает получение биорезорбируемой трубки, многократную инкубацию трубки в стерильном физиологическом растворе в течение 15-30 минут с заменой физиологического раствора, подготовку экспериментальных животных, посредством питания 10% раствором глюкозы без ограничения в течение 2 суток, закрытие анастомоза трубкой на экспериментальных животных, послеоперационный уход посредством ежедневных инъекций цефтриаксона. Способ помимо механической защиты зоны анастомоза обеспечивает активное встраивание имплантата в процесс регенерации. Имплантат становится основой для регенерации стенки кишки. В экспериментальных исследованиях на крысах показана полная регенерация стенки кишки с сохранением архитектоники и функции органа. 13 з.п. ф-лы, 3 ил., 2 пр.

Изобретение относится к биотехнологии и медицине. Более подробно изобретение относится к области хирургии, регенеративной медицине и тканевой инженерии, а именно к способам восстановления стенок полых органов желудочно-кишечного тракта. Предложен способ восстановления стенки тонкой кишки, включающий следующие шаги: 1) получение биорезорбируемой трубки посредством реализации следующих шагов: а) растворение в гексафторизопропаноле макромономеров: метакрилированного желатина (ЖМА) из расчета 10 масс. % и метакрилированного фиброина (ФМА) из расчета 4 масс. % при 55°С±5 в течение 18-36 часов; б) получение смеси, включающей равные части растворов ЖМА и ФМА, и фотоинициатор дифенил(2,4,6-триметилбензоил)фосфин оксид из расчета 5 масс. % от массы макромономеров; в) подготовка направляющей для формирования трубки посредством обезжиривания с последующим высушиванием поверхности стеклянной палочки с круглым сечением диаметром 2-15 см; г) подготовка армировочной нити посредством выдерживания шелковой некрученой нити 8/0-4/0 в смеси, полученной на шаге б); д) формирование первых слоев биорезорбируемой трубки на направляющей посредством ее погружения в смесь, полученную на шаге б), на 5-10 секунд с последующим вращением и экспонированием полученной заготовки в свете ультрафиолетовой лампы не менее 2 минут; е) армирование нитью концевых участков трубки посредством укладывания нити витками на расстоянии 2-5 мм от концов формируемой трубки на заготовку, полученную на шаге д); ж) формирование наружных слоев биорезорбируемой трубки посредством погружения полученной на шаге е) заготовки в смесь, полученную на шаге б), на 5-10 секунд, с последующим вращением и экспонированием полученной трубки в свете ультрафиолетовой лампы не менее 2 минут; з) обработка сформированной трубки выдерживанием в дистиллированной воде в течение 1-1,5 часа, с последующим выдерживанием в 96%-ом этаноле в течение 12-18 часов и повторным выдерживанием в дистиллированной воде в течение 1-1,5 часа, обработкой внутренней поверхности сформированной трубки хлороформом. Далее на этапе 2) подготовка биорезорбируемой трубки для закрытия анастомоза посредством ее инкубации в стерильном физиологическом растворе в течение 15-30 минут с многократной заменой физиологического раствора; 3) предоперационная подготовка экспериментальных животных посредством питания 10% раствором глюкозы без ограничения в течение 2 суток; 4) закрытие анастомоза трубкой, для чего животных наркотизируют, фиксируют в положении на спине, внутримышечно вводят цефтриаксон из расчета 100 мг/кг массы тела, формируют операционную рану, в которую выводят участок тонкой кишки, после чего с противобрыжеечного края кишки выполняют разрез на половину диаметра кишечной трубки, вводят в просвет кишечника биорезорбируемую трубку и фиксируют с помощью хирургической нити, после чего в месте имплантации удаляют участок кишечной трубки длиной 3-10 мм и проводят послойное ушивание полости с помещением кишки в брюшную полость; 5) послеоперационный уход посредством ежедневных инъекций цефтриаксона из расчета 50 мг/кг массы тела в течение 4-х суток. Технический результат - обеспечение возможности снижения послеоперационных осложнений до полного их отсутствия и полного восстановлении циркулярного дефекта стенки тонкой кишки. 16 з.п. ф-лы, 3 пр., 7 ил.

Изобретение относится к биотехнологии и медицине. Более подробно изобретение относится к области хирургии, а именно к методам снижения вероятности несостоятельности кишечных анастомозов. Изобретение относится к способу получения биорезорбируемой трубки на основе метакрилированного желатина и метакрилированного фиброина, включающему следующие шаги: а) растворение в гексафторизопропаноле макромономеров: метакрилированного желатина (ЖМА) из расчета 10 масс. % и метакрилированного фиброина (ФМА) из расчета 4 масс. % при 55°С±5 в течение 18-36 часов; б) получение смеси, включающей равные части растворов ЖМА и ФМА и фотоинициатор дифенил(2,4,6-триметилбензоил)фосфин из расчета 5 масс. % от массы макромономеров; в) подготовка направляющей для формирования трубки посредством обезжиривания с последующим высушиванием поверхности стеклянной палочки с круглым сечением диаметром 2-15 см; г) подготовка армировочной нити посредством выдерживания шелковой некрученой нити 8/0-4/0 в смеси, полученной на шаге б); д) формирование первых слоев биорезорбируемой трубки на направляющей посредством ее погружения в смесь, полученную на шаге б), на 5-10 секунд с последующим вращением и экспонированием полученной заготовки в свете ультрафиолетовой лампы не менее 2 минут; е) армирование нитью концевых участков трубки посредством укладывания нити витками на расстоянии 2-5 мм от концов формируемой трубки на заготовку, полученную на шаге д); ж) формирование наружных слоев биорезорбируемой трубки посредством погружения полученной на шаге е) заготовки в смесь, полученную на шаге б), на 5-10 секунд, с последующим вращением и экспонированием полученной трубки в свете ультрафиолетовой лампы не менее 2 минут; з) обработка сформированной трубки выдерживанием в дистиллированной воде в течение 1-1,5 часа, с последующим выдерживанием в 96%-ом этаноле в течение 12-18 часов и повторным выдерживанием в дистиллированной воде в течение 1-1,5 часа, обработкой внутренней поверхности сформированной трубки хлороформом. Технический результат – получение изделий, обладающих программируемой скоростью деградация, низкой иммуногенностью, легкостью модификации; разработка нового подхода к решению проблемы несостоятельности анастомоза, где, помимо механической защиты зоны анастомоза, имплантат активно встраивается в процесс регенерации. 10 з.п. ф-лы, 3 ил., 2 пр.

Группа изобретений относится к медицине. Имплантат для регенерации костной ткани состоит из композитных микрочастиц, характеризующихся пористой структурой с размером пор от 10 до 85 мкм, содержанием фиброина шелка от 65 до 75 мас.%, содержанием желатина от 25 до 35 мас.%, а также показателем модуля Юнга на сжатие в дегидратированном состоянии 83±1 МПа, во влажном - 590±60 кПа. Способ получения имплантата включает следующие стадии: подготовку водного раствора фиброина, подготовку водного раствора желатина, формирование композитного скаффолда, криоизмельчение скаффолда, полученного на стадии формирования композитного скаффолда, и осаждение композитных микрочастиц, полученных на стадии криоизмельчения скаффолда. Подготовку водного раствора фиброина шелка осуществляют путем растворения фиброина из расчета 100-150 мг/мл в смеси CaCl2:C2H5OH:H2O при молярном соотношении компонентов смеси 1:2:8 в течение 5-7 часов при нагревании до 70°С±5°С и последующего диализа против воды, центрифугирования при 13400 g в течение 10 мин и доведения полученного раствора водой до концентрации 20-30 мг/мл. Подготовку водного раствора желатина осуществляют путем растворения сухого желатина в воде из расчета 20-30 мг/мл. Формирование композитного скаффолда осуществляют путем заморозки в течение 6-8 суток при температуре -(18-25)°С смеси растворов, полученных на стадиях подготовки водного раствора фиброина шелка и подготовки водного раствора желатина, в объемном соотношении 7:3 и 0,8-1,2 об.% диметилсульфоксида (ДМСО) с последующей разморозкой и обработкой 96%-ным этанолом, что обеспечивает формирование β-складчатой структуры, затем скаффолды замораживают в дистиллированной воде. Криоизмельчение скаффолда, полученного на стадии формирования композитного скаффолда, осуществляют в 70%-ном этаноле с использованием диспергатора, осуществляют последующую сортировку полученных фрагментов скаффолда с получением композитных микрочастиц размером 100-250 мкм. Осаждение композитных микрочастиц, полученных на стадии криоизмельчения скаффолда, из суспензии в 70%-ном этаноле осуществляют при 13000-18000 g в течение 30-40 мин с последующим высушиванием при 50-55°С в течение не менее 2 суток для формирования имплантата для регенерации костной ткани. Изобретения обеспечивают упрощение технологии получения имплантата в сочетании с улучшением механических характеристик получаемого имплантата, в частности модуля Юнга при измерении на сжатие, повышением его остеиндуктивных свойств, что способствует ускорению заживления и регенерации костной ткани. 2 н. и 1 з.п. ф-лы, 6 ил.

Изобретение относится к области медицины и биотехнологии. Предложен способ получения биорезорбируемых трехмерных пористых структур на основе метакрилированного желатина и фиброина шелка, включающий следующие стадии: растворение фиброина шелка в водном растворе бромида лития; заморозка водного раствора фиброина шелка и лиофилизация; растворение желатина в калий-фосфатном буфере и добавление к раствору избытка метакрилового ангидрида; проведение реакции метакрилирования желатина; добавление к реакционной смеси калий-фосфатного буфера с последующим ее охлаждением и диализом; заморозка полученного продукта и лиофилизация; получение водного раствора регенерированного фиброина шелка; получение раствора метакрилированного желатина в ДМСО и его охлаждение; добавление к раствору метакрилированного желатина фотоинициатора; внесение раствора регенерированного фиброина шелка в смесь метакрилированного желатина и фотоинициатора с последующим проведением фотополимеризации; обработка 96%-ным этиловым спиртом гидрогелей, полученных после фотополимеризации; удаление остатков растворителей. Изобретение обеспечивает высокую скорость фотополимеризации, а также возможность получения пористых конструкций заданной формы и с контролируемой структурой. 3 з.п. ф-лы, 2 пр., 1 ил.

Группа изобретений относится к химико-фармацевтической промышленности и представляет собой способ получения минерализованного композитного микроскаффолда для регенерации костной ткани и применение минерализованного микроскаффолда, полученного данным способом. При этом способ включает стадии подготовки водного раствора фиброина шелка, подготовки водного раствора желатина, формирования скаффолда из смеси растворов фиброина шелка и желатина (7:3) с добавлением 1% ДМСО, криоизмелчения скаффолда с использованием диспергатора, сортировки полученных фрагментов микроскаффолда и получение минерализованных микроскаффолдов путем погружения их в раствор, содержащий 684 мМ NaCl, 9,5 мМ CaCl2, 3,5 мМ MgCl2, 21 мМ NaHCO3 и 4 мМ Na2HPO4, рН 4,0, и последующего погружения в раствор, содержащий 684 мМ NaCl, 9,5 мМ CaCl2, 0,7 мМ MgCl2, 10,5 мМ NaHCO3 и 4 мМ Na2HPO4, рН 4,0 с дальнейшим высушиванием полученного продукта. Изобретения позволяют получать минерализованные композитные микроскаффолды, обладающие усиленной стимуляцией остеогенеза в отсутствие каких-либо индукторов, а также усиленной реорганизацией актинового цитоскелета, необходимой для успешной адгезии и дифференцировки остеобластов при упрощении технологии. 2 н.п. ф-лы, 1 табл., 3 ил., 3 пр.

Изобретение относится к медицине, а именно к дерматологии, и может быть использовано для восстановления кожного покрова. Для этого в область повреждения кожи последовательно вводят биорезорбируемый носитель с культурой клеток фибробластов и биорезорбируемый носитель с культурой кераноцитов, где носитель представляет собой частицы диаметром 100-500 мкм, обладающие отрицательным зарядом при физиологических значениях рН, полученные измельчением трехмерных матриксов на основе фиброина шелка Bombyx mori. Способ позволяет ускорить процесс заживления раны за счет ускорения контракции раны на ранних этапах восстановления и ускорения реэпителизации. 5 з.п. ф-лы, 2 ил., 4 пр.

Изобретение относится к биотехнологии и медицине, а точнее к созданию биорезорбируемых, биосовместимых, фотоотверждаемых композитных пленок. Способ получения биорезорбируемых фиброиновых пленок включает стадии: метакрилирования желатина путем растворения навески сухого желатина в К-фосфатном буфере при перемешивании на водяной бане, инкубации смеси желатина и МА при перемешивании, внесение К-фосфатного буфера до увеличения объема смеси в 1,9-2,1 раза, удаление непрореагировавшего МА и дополнительных побочных продуктов путем диализа против дистиллированной воды и последующего замораживания полученного раствора и лиофилизации; подготовки водного раствора фиброина шелка путем растворения фиброина в смеси CaCl2:C2H5OH:H2O при нагревании и последующего диализа против воды, доведения полученного раствора водой до концентрации 20-45 мг/мл; подготовки смеси для фотоотверждения путем растворения лиофилизированного метакрилированного желатина в водном растворе фиброина при перемешивании на водяной бане, внесения в полученную смесь фотоинициатора Irgacure 2959; фотоотверждения смеси путем облучения УФ-светом (240-300 нм) с получением гидрогеля; получения фиброиновой пленки из гидрогеля посредством обеспечения перехода молекул фиброина из α-спиралей и статистического клубка в β-слои путем высушивания гидрогеля при комнатной температуре. Изобретение обеспечивает возможность адгезии и пролиферации клеток, таким образом обеспечивая возможность их применения в регенеративной медицине и биоинженерии. 2 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к медицине и может быть использовано для восстановления кожного покрова у субъекта. Для этого в область повреждения кожи вводят суспензию, содержащую биорезорбируемый носитель с композицией клеток фибробластов и кераноцитов на поверхности. При этом носитель представляет собой частицы диаметром 100-500 мкм, обладающие отрицательным зарядом при физиологических значениях рН. Указанные частицы получены измельчением трехмерных матриксов на основе фиброина шелка Bombyx mori. Изобретение обеспечивает замедление контракции поврежденной области на ранних этапах восстановления, ускорение реэпителизации раны и, как следствие, ускорение заживления поврежденного кожного покрова субъекта. 5 з.п. ф-лы, 2 ил., 4 пр.

Изобретение относится к области биотехнологии и медицины. Предложен биорезорбируемый микроноситель для доставки клеток в область повреждения ткани кожи для заживления и регенерации ран. Микроноситель представляет собой частицы диаметром 50-300 мкм с отрицательным зарядом при значениях рН 6,0-7,5. При этом частицы получены измельчением трехмерных пористых матриксов на основе фиброина шелка Bombyx mori. Изобретение обеспечивает иммобилизацию на носителе большего количества клеток, возможность выполнения функции каркаса для функционирующих клеток в условиях in vitro, in vivo и регулирование скорости биодеградации микроносителя. 3 з.п. ф-лы, 1 ил., 3 табл., 3 пр.

Изобретение относится к области создания способа нейропротекции в эксперименте, включающего введение средства, содержащего биодеградируемый полимерный матрикс на основе фиброина с иммобилизированным пептидом-агонистом рецептора ПАР1, освобождаемым активированным протеином С. Использование данного изобретения позволяет выполнить исследования нейропротекции на клеточной модели (in vitro), имитирующей условия in vivo, включающей введение в клеточную модель средства, содержащего биодеградируемые матриксы на основе фиброина шелка и пептид-агонист рецептора ПАР1, освобождаемого активированным протеином С. 2 з.п. ф-лы, 6 ил., 3 пр.

Группа изобретений относится к области создания средства, обладающего нейропротекторными свойствами в эксперименте, включающего биодеградируемый полимерный матрикс на основе фиброина шелка с иммобилизированным пептидом-агонистом рецептора ПАР1, освобождаемым активированным протеином С в соотношении 99-99,9:0,1-1 мас.% фиброин:пептид, а также способа его получения. Использование данной группы изобретений позволяет защитить пептид-агонист рецептора ПАР1, освобождаемый активированным протеином С, от протеолиза и регулировать скорость выхода средства в условиях эксперимента. 2 н. и 2 з.п. ф-лы, 6 ил., 1 табл., 3 пр.

Группа изобретений относится к фармацевтической промышленности, а именно к композитному матриксу для регенерации костной ткани, способу его получения и применения. Композитный матрикс для регенерации костной ткани, включающий 60% фиброина, 10% желатина и 30% гидроксиапатита, при этом размер пор матрикса составляет 150-300 мкм. Способ получения композитного матрикса, заключающийся в смешивании гидроксиапатита с NaCl, растворении желатина и фиброина в растворе лития хлористого в муравьиной кислоте, центрифугировании раствора, содержащего фиброин и желатин, послойном нанесении супернатанта в форму, смешивая его со смесью гидроксиапатита с NaCl, высушивании образцов, дальнейшем высушивании при комнатной температуре, обработке полученного матрикса этанолом спиртом, промывании бидистиллированной водой, дегазации при определенных условиях. Способ регенерации костной ткани, заключающийся во введении эффективного количества матрикса в область повреждения костной ткани нуждающегося субъекта. Применение композитного матрикса для регенерации костной ткани. Вышеописанный матрикс обладает высокой прочностью и хорошей биосовместимостью, а также биоинертностью и способностью к биодеградации, что позволяет успешно применять их для регенерации костной ткани. 4 н.п. ф-лы, 3 ил., 2 пр.

 


Наверх