Патенты автора Цацин Александр Алексеевич (RU)

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. Задачей изобретения является повышение точности бесплатформенной инерциальной навигационной системы (БИНС) путем создания способа непрерывной коррекции углов ориентации от спутниковой навигационной системы (СНС) с одним приемником, обеспечение универсальности его использования для любого ЛА. Способ коррекции углов ориентации БИНС на скользящем интервале, при котором по сигналам датчиков угловых скоростей (ДУС) определяют углы крена и тангажа ЛА и осуществляют коррекцию углов крена и тангажа БИНС путем совместной обработки угловых скоростей, линейных ускорений ЛА. При этом дополнительно корректируют текущий курс ЛА, используя полученные от одного приемника СНС проекции путевых скоростей, для этого осуществляют совместное использование множества измерений на скользящем интервале наблюдений, составляют одинаковой размерности три массива спутниковых скоростей, три массива угловых скоростей и три массива линейных ускорений. Далее определяют наличие угловых скоростей вращения ЛА и их изменчивость на рассматриваемом интервале. При этом предлагаются алгоритмы совместного оценивания крена, тангажа и курса ЛА по измерениям трехкомпонентных датчиков ДУС, ДЛУ и одного приемника СНС итерационным алгоритмом по методу Хартли. Данный алгоритм удобен для практического применения, так как может быть реализован при относительно небольших вычислительных затратах. Для применения рассматриваемого алгоритма предварительная настройка его на процессах, характерных для конкретного вида ЛА не требуется. Технический результат – повышение точности и обеспечение непрерывной коррекции углов тангажа, крена и курса в условиях маневрирования в полете. 5 ил.

Изобретение относится к области приборостроения и может быть использовано при выставке бесплатформенных инерциальных навигационных систем (БИНС) управляемого аппарата (УА). Способ идентификации углов рассогласования БИНС УА и ИНС самолета-носителя (СН), использующий угловые скорости выходных сигналов БИНС УА и ИНС СН, измерение угловых скоростей производят при выполнении специального маневра СН. При этом дополнительно по команде «начало маневра» начинают накапливать измерения датчиков ИНС и БИНС, вводят матрицу функций чувствительности, составляют модель связи угловой скорости ИНС ЛА и угловой скорости БИНС подвески, вводят вектор углов подвески, по окончании маневра вычислитель БИНС выполняет расчет углов подвески. Для расчета используют итерационный метод функций чувствительности изображений процессов изменения угловых скоростей в частотной области к вариациям искомых углов подвески, при этом используют преобразование Фурье для перевода процессов в частотную область, расчет изображения для одной частоты выполняют с учетом приведения к действительному виду по методу Хартли. Вектор углов подвески оценивают один раз по окончании маневра с использованием итерационной процедуры частотного метода наименьших квадратов, контролируют правильность оценок углов подвески как в частотной области, так и в области времени представления переходных процессов, о результатах контроля выдается сообщение. Технический результат – обеспечение возможности одноразового определения с требуемой точностью углов рассогласования осей связанных систем координат УА и СН в полете. 7 ил.

Данное изобретение относится к автоматической либо автоматизированной калибровке систем и датчиковпутем «обучения» интеллектуального датчика в процессе калибровки. Техническим результатом является упрощение процедур разработки датчиков на основе применения предложенной в изобретении новой технологии их индивидуальной калибровки и обучения, в результате которой может быть получен «интеллектуальный» датчик, обеспечивающий как восстановление воздействующей на него физической величины с заданной точностью во всем диапазоне условий рабочего функционирования, так и уникальное для датчика конкретного типа избирательное повышение чувствительности в интересующем диапазоне изменения измеряемой физической величины. Калибровка интеллектуальных датчиков осуществляется путем подачи на их вход множества известных сигналов, наблюдения множества выходных сигналов и использования искусственной нейронной сети для аппроксимации (интерполяции) математической модели калибруемого датчика, которая должна удовлетворять определенным условиям в соответствии с коммутативной диаграммой, соответствующей принципу изоморфизма. Путем обучения искусственной нейронной сети формируют в неявном виде обратную (либо прямую) модель калибруемого интеллектуального датчика, позволяющую с заданной точностью восстанавливать воздействующее на вход системы (либо непосредственно наблюдаемое на ее выходе) известное множество сигналов. 3 ил.

Изобретение относится к измерительной технике, автоматике и может быть использовано при создании высокоточных аналого-цифровых преобразователей, датчиков перемещений и систем контроля параметров изделий электронной техники. Техническим результатом является уменьшение погрешности измерения углового положения. Устройство содержит аналоговый датчик углового положения, цифровой датчик углового положения, расположенный на одном валу с аналоговым датчиком углового положения, аналого-цифровой преобразователь и вычислитель. 4 ил., 2 табл.

Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении автоматизированной структурно-параметрической, либо непараметрической идентификации модели объекта по известным на основе измерений значениям входных и выходных сигналов. Технический результат достигается за счет способа идентификации нелинейных систем путем подачи на их вход множества известных сигналов, наблюдения множества выходных сигналов и использования искусственной нейронной сети для аппроксимации (интерполяции) идентифицируемой модели, которая должна удовлетворять определенным условиям в соответствии с коммутативной диаграммой, соответствующей принципу изоморфизма. 2 ил.

Изобретение относится к измерительной технике, автоматике, и может быть использовано при создании высокоточных аналого-цифровых преобразователей и систем контроля параметров изделий электронной техники. Техническим результатом является уменьшение погрешности измерения углового положения. Способ содержит измерение угла поворота аналоговым и цифровым датчиками различного принципа измерения с совмещенными диапазонами измерений, расположенными на одном валу, обработку полученных сигналов, внесение коррекции расчетными величинами погрешностей, формирование выходного значения угла. 4 ил., 2 табл.

Изобретение относится к контрольно-измерительной технике, в частности к автоматическим и автоматизированным системам разработки интеллектуальных датчиков путем «обучения» в процессе калибровки, и может быть использовано в приборостроении при разработке, изготовлении и диагностике интеллектуальных датчиков и измерительных систем различного типа. Система для разработки интеллектуального датчика содержит: генератор эталонного сигнала, первичный измерительный преобразователь, процессор, задатчик структуры искусственной нейронной сети, автоматизированное рабочее место обучения (формирователь f-1), первое и второе вычитающие устройства, соединенные между собой в соответствии с блок-схемой на фиг. 2. Система разработки интеллектуального датчика опирается на общий эффект от применения двух технологий - технологии идентификации систем на основе общего принципа изоморфизма и технологии разработки и обучения искусственных нейронных сетей. Техническим результатом является упрощение процедур разработки датчиков на основе применения предложенной в изобретении новой технологии их индивидуальной калибровки и обучения, в результате которой может быть получен «интеллектуальный» датчик, обеспечивающий как восстановление воздействующей на него физической величины с заданной точностью во всем диапазоне условий рабочего функционирования, так и уникальное для датчика конкретного типа избирательное повышение чувствительности в интересующем диапазоне изменения измеряемой физической величины. 2 ил.

Изобретение относится к областям информатики и вычислительной техники и может быть использовано для генерации псевдослучайной двоичной последовательности. Техническим результатом является повышение эффективности составления двоичного кода псевдослучайной кодовой шкалы. Генерируют двоичные коды при формировании Т-последовательности. Используют ориентированное дерево формирования Т-последовательности. Выполняют анализ данных при построении и обходе ациклического направленного графа и динамический анализ графа путем одновременного построения и обхода графа по предварительно сформулированным правилам в отношении структуры и направления обхода с учетом заданных начальных условий. Структуру, порядок построения и приоритет направления обхода ориентированного дерева определяют алфавитом, т.е. порядком элементов алфавита a1, а2, …, ak. Символ алфавита а1 является корнем. Все узлы имеют одинаковый состав потомков а1, а2, …, ak. В процессе обхода контролируют список сформированных слов на уникальность. При обходе вводят запреты 1 рода - запрет слова с возвратом к предку из-за неуникальности слова; запреты 2 рода - запрет слова с возвратом к предку из-за отсутствия возможных приоритетных вариантов движения вниз. 3 ил., 2 табл.

Изобретения относятся к авиационной технике, а именно к способам и устройствам определения центра масс (ЦМ) летательного аппарата (ЛА) в полете. Способ основан на измерении параметров полета ЛА, включает в себя измерение ускорений относительно ЦМ в двух фиксированных точках, расположенных вдоль продольной оси ЛА на известном расстоянии друг от друга, при помощи акселерометров, установленных в этих точках, один в хвостовой, другой в головной частях фюзеляжа, использование значения ускорения силы тяжести и на их основе определение ЦМ в установившемся режиме полета при выполнении соответствующего маневра. В качестве измеряемых ускорений относительно ЦМ ЛА используют тангенциальные ускорения ЛА, для чего акселерометры устанавливают так, что их оси чувствительности противоположно направлены и параллельны вертикальной оси ЛА. Дополнительно используют сигнал от бортовой навигационной системы, соответствующий линейному ускорению ЛА относительно вертикальной оси, причем при определении центра масс выполняют поочередно маневры «кабрирование» и «пикирование». Устройство для осуществления способа включает в себя два акселерометра, бортовую навигационную систему, два суммирующих устройства, три умножителя, два делителя, блок определения косинуса и вычитающее устройство, соединенные между собой определенным образом. Технический результат заключается в упрощении реализации и применения, повышении точности измерений координат местоположения ЦМ ЛА. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области авиационного приборостроения и может найти применение для определения центра масс летательного аппарата (ЛА) в полете. Технический результат - повышение точности. Для этого осуществляют измерение текущих углов тангажа, кажущегося линейного ускорения, угловой скорости аппарата относительно его центра масс, абсолютного ускорения в произвольной точке, использование значения ускорения силы тяжести, вычисленного в реальном масштабе времени, и, на основании полученной совокупности данных, определение центра масс. При этом измеряют центростремительные ускорения относительно центра масс в двух фиксированных точках, расположенных вдоль продольной оси аппарата на известном расстоянии друг от друга, посредством акселерометров, установленных в этих точках, один в хвостовой, другой в головной частях фюзеляжа. Определение центра масс производят в установившемся режиме полета при выполнении маневра типа «змейка». Устройство содержит два акселерометра 1, 2, бортовую навигационную систему 3, вычитающее устройство 4, два устройства 5, 6 возведения в степень, три сумматора 7, 8 и 9, два умножителя 10, 12, задатчик сигнала, соответствующего расстоянию между акселерометрами, блок 11 определения синуса, два масштабирующих устройства 13, 14 и делитель 15, выход которого является выходом устройства. 2 н.п. ф-лы, 1 ил.

 


Наверх