Патенты автора Зубко Алексей Викторович (RU)

Изобретение относится к методам обеспечения стойкости электронной бортовой аппаратуры. Сущность изобретения заключается в том, что способ оценки частоты одиночных радиационных эффектов, а именно сбоев и отказов, в бортовой аппаратуре космических аппаратов содержит этапы, на которых дискретные зависимости дифференциальных спектров плотности потоков заряженных частиц космического пространства с помощью компьютерной алгебры преобразуют в непрерывные зависимости, вклад в частоту одиночных радиационных эффектов при известных зависимостях сечений одиночных радиационных эффектов от энергетических характеристик частиц для изделий электронной техники определяют с помощью компьютерной алгебры, для определения верхней оценки вклада в частоту одиночных радиационных эффектов при неизвестных зависимостях сечений одиночных радиационных эффектов от энергетических характеристик частиц по полученным непрерывным зависимостям дифференциальных спектров плотности потоков частиц с помощью компьютерной алгебры определяют значения соответствующих интегральных спектров плотности потоков заряженных частиц для пороговых значений энергетических характеристик частиц для эффектов сбоев и отказов, определяют сумму вкладов в частоты видов одиночных радиационных эффектов в бортовой аппаратуре космических аппаратов. Технический результат – повышение точности оценки одиночных радиационных эффектов в бортовой аппаратуре космических аппаратов.

Изобретение относится к методам обеспечения длительной (до года и более) радиационной стойкости оптических стекол космической аппаратуры. Способ включает вычисление, по известной методике, распределения дозы ионизирующих излучений космического пространства на оптической оси каждого выполненного из стекла элемента оптической системы в условиях эксплуатации с учетом защитных свойств конструкции. Далее с использованием компьютерной алгебры вычисляют увеличение спектральной оптической плотности указанных элементов на основании средней мощности дозы ионизирующих излучений на указанной оптической оси и характеристик кинетики (образования и релаксации) радиационной окраски стекла данного элемента. Определяют увеличение спектральной оптической плотности оптической системы и соответствующее снижение спектрального коэффициента ее пропускания. Сравнивают снижение этого коэффициента с допустимым и при необходимости заменяют марки оптического стекла у элементов с максимальным увеличением спектральной оптической плотности. Технический результат состоит в оптимизации оптических систем путем предварительной оценки с повышенной точностью снижения их спектрального коэффициента пропускания в течение срока активного существования.

Изобретение относится к защите элементов, расположенных за расчетным защитным экраном (ЗЭ), от ионизирующих излучений космического пространства. Форма поверхности экрана считается аналитической. Способ заключается в том, что задают в дискретном виде величины локальных доз в центре эталонного ЗЭ сферической формы в зависимости от его толщины. Дискретную зависимость заданных доз от указанной толщины преобразуют в непрерывную. Разбивают расчетный ЗЭ на сектора со стандартными поверхностями, внутреннюю и внешнюю стороны которых представляют аналитическими функциями координат. Определяют радиальные толщины расчетного ЗЭ и оценивают величину локальной дозы, полученной облучаемым элементом от излучений, проходящих через все стандартные поверхности. Соответствующий интеграл по полному телесному углу вычисляют с помощью системы компьютерной алгебры. Сравнивают полученную локальную дозу с допустимой дозой и, в зависимости от результата, уточняют конструкцию расчетного ЗЭ или заменяют облучаемый элемент. Технический результат изобретения состоит в возможности оптимизировать конструкцию ЗЭ благодаря проведению предварительной оценки величины локальных доз ионизирующих излучений с большой точностью. 1 ил.

 


Наверх