Патенты автора Сайгин Михаил Юрьевич (RU)

Изобретение относится к области квантовой оптики и квантовой информации и касается способа фильтрации накачки для источников квантовых состояний. Способ включает подачу на M входов N-канального интерферометра, характеризующегося передаточной матрицей U размером N на N, сгенерированных фотонов от M источников фотонов с остаточными сигналами когерентной накачки от, по крайней мере, одного источника лазерного излучения. Сигналы когерентной накачки при использовании непрерывного режима формируют с одинаковым частотным спектром и одинаковой поляризацией, а при использовании импульсного режима формируют импульсы когерентной накачки одинаковой формы поляризации и с совпадающими центральными частотами их спектра, которые подают на N-канальный интерферометр синхронно. Передаточная матрица U выполнена с возможностью фокусировки входных сигналов когерентной накачки, включая остаточные сигналы когерентной накачки от источников фотонов, по меньшей мере, в один выход, и вывода части фотонов от источников фотонов в оставшиеся выходы. Технический результат заключается в снижении потерь при фильтрации, обеспечении возможности фильтрации одним устройством фотонов, генерируемых множеством источников и возможности фильтрации излучения, когда поляризация излучения совпадает с поляризацией генерируемых фотонов. 2 н. и 5 з.п. ф-лы, 9 ил.

Изобретение относится к способам создания устройств, осуществляющих линейные преобразования электромагнитных сигналов между большим числом каналов. Изобретение может быть использовано в качестве элемента оптических вычислительных устройств, при реализации отдельных элементов коммуникационных и вычислительных сетей, обслуживающих большое число абонентов и вычислительных узлов; эти элементы и сети могут быть как классическими, так и квантовыми. Помимо этого, изобретение может быть использовано для создания устройств, осуществляющих анализ и синтез многомодовых электромагнитных полей. N-канальный линейный преобразователь электромагнитных сигналов включает N каналов, образованных N входами и N выходами линейного преобразователя и М каскадно соединенных модулей, где М≥N+1, предпочтительно М=2N, каждый из которых включает N входов модуля, N выходов модуля и двухканальные блоки преобразования, обеспечивающие преобразование сигналов из входов модуля в выходы модуля и расположенные параллельно внутри модуля, и включающие по одному статическому делителю, содержащему два входа делителя и два выхода делителя, и одному элементу сдвига фазы, расположенному на одном из входов или на одном из выходов статического делителя; входы первого модуля являются входами линейного преобразователя, выходы модуля М являются выходами линейного преобразователя; при этом в случае нечетного N в каждом слое содержится (N-l)/2 блоков преобразования, а также один свободный канал слоя, осуществляющий передачу сигнала из входа слоя в его соответствующий выход без преобразования и расположенный либо перед первым блоком преобразования, если в соседнем слое он располагался после последнего блока преобразования, либо после последнего блока преобразования, если в соседнем слое он расположен перед первым блоком преобразования; в случае четного N модули характеризуются чередующимся количеством блоков преобразования: в модуле содержится либо N/2 блоков преобразования, если в соседнем модуле содержится (N/2)-1 блоков преобразования, либо в модуле содержится (N/2)-1 блоков преобразования, если в соседнем модуле содержится N/2 блоков преобразования; при этом модуль, содержащий (N/2)-l блоков преобразования, также включает 2 свободных канала модуля, осуществляющих передачу сигнала из входа модуля в его соответствующий выход без преобразования, один из которых соединяет первый вход модуля с первым выходом модуля, а другой соединяет вход и выход последнего модуля; где статические делители для блоков преобразования выбраны произвольными с коэффициентом пропускания по мощности от 1/2 до 4/5, а элементы сдвига фазы выбраны с возможностью реализации линейного преобразования, заданного заранее с помощью определенной передаточной матрицы. Техническим результатом при реализации заявленного решения выступает уменьшение влияния ошибок, возникающих на этапе изготовления схем многоканальных линейных преобразователей, а также повышение числа каналов универсальных линейных преобразователей с сохранением высокого качества преобразований по сравнению с известными решениями. 4 з.п. ф-лы, 7 ил., 4 табл.

Изобретение относится к способам создания устройств, осуществляющих линейные преобразования электромагнитных сигналов между большим числом каналов. Достигаемым техническим результатом изобретения является уменьшение плотности расположения перестраиваемых элементов, приводящих к снижению влияния нежелательных перекрестных взаимодействий. Изобретение представляет собой N-канальный линейный преобразователь электромагнитных сигналов, где N>2, включающий N каналов для сигналов и М блоков смешения сигналов, каждый из которых включает N входов и N выходов и характеризуется передаточной матрицей с комплексными элементами, по модулю меньшими 1, при этом блоки смешения соединены последовательно, и, по меньшей мере, на одном входе и на одном выходе, по меньшей мере, одного блока смешения размещен элемент сдвига фазы, при этом блоки смешения выполнены с передаточными матрицами, для которых отношение, по крайней мере, двух соответствующих элементов передаточных матриц, по крайней мере, двух блоков смешения отлично от 1, а на входе, по крайней мере, одного блока смешения количество элементов сдвига фазы не превышает N-2 и способ преобразования сигнала, используемый преобразователем. 2 н. и 13 з.п. ф-лы, 1 табл., 12 ил.

Изобретение относится к области оптики, а именно к способам создания линейных оптических устройств, осуществляющих линейные преобразования между большим числом каналов. Изобретение позволяет обеспечить возможность реализации многоканального линейного оптического преобразования, уменьшить потери за счет использования непланарной модульной архитектуры схемы, возможной, когда число входных портов, на которые подаются преобразуемые сигналы, меньше числа каналов преобразования. Преобразование каждого этапа реализуется параллельно несколькими модулями, размерности которых намного меньше размерности общего преобразования. В двухэтапной схеме необходим только один слой интерконнекта между модулями. 2 н. и 3 з.п. ф-лы, 12 ил.

Изобретение относится к области исследования и анализа материалов. Оптическое устройство содержит источник оптического излучения, приёмник оптического излучения и направляющий элемент в виде объёмной фигуры с плоскими гранями из твердотельного материала, прозрачного для длин волн заданного диапазона, в котором выполнена интегральная оптическая структура, сформированная путём модификации показателя преломления. Интегральная оптическая структура содержит по меньшей мере один волновод с подводящим и отводящим участками, расположенными под углом друг к другу и с одного конца сходящимися на плоской грани направляющего элемента, являющейся рабочей, а с другого выходящими через другие плоские грани направляющего элемента, являющиеся соответственно подводящей и отводящей. Источник излучения пристыкован к подводящей, а приёмник эмиссионного сигнала к отводящей грани съёмного элемента. Технический результат заключается в повышении прочности при максимальной компактности устройства. 6 з.п. ф-лы, 1 ил.

Изобретение относится к области создания интегральных оптических волноводных микроструктур для прикладного использования в системах получения, обработки и передачи информации по оптическим каналам связи и другим областям науки и техники. Способ формирования изгиба волновода в интегральной оптической схеме заключается в формировании в прозрачной для длин волн заданного диапазона твердотельной заготовке с по меньшей мере одной плоской гранью прямолинейных участков волновода, оси которых расположены в одной плоскости с нормалью к грани под одинаковыми углами к указанной грани, и размещении на этой грани отражающей поверхности. При этом участки волновода сформированы путем фокусировки лазерного излучения в объеме заготовки, а точка пересечения их осей расположена внутри заготовки и отстоит от указанной плоской грани на расстоянии не более чем 1/10 максимального линейного размера заготовки. Технический результат – уменьшение потерь оптических сигналов, проходящих через изгибы волноводов, которые созданы методом печати в объеме твердого прозрачного стекла. 4 з.п. ф-лы, 6 ил.

Изобретение относится к области квантовой криптографии, а именно к передаче секретной информации, от передающей до принимающей наземных станций, в форме однофотонных оптических импульсов через низкоорбитальные спутники, при помощи расположенных на них отражающих или перенаправляющих устройств. Технический результат состоит в повышении дальности передачи, при сохранении абсолютной секретности. Для этого способ включает передачу информации от передающей до принимающей наземных станций в форме однофотонных оптических импульсов через низкоорбитальные спутники, на которых располагаются отражающие и/или перенаправляющие устройства, которые принимают излучение от наземной передающей станции, отражают и/или перенаправляют его на принимающую наземную станцию или на другие спутники с последующим перенаправлением на принимающую станцию, причем передатчик выдает одиночные фотоны с определенной скоростью. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области квантовой криптографии, а более конкретно к способам генерации секретных ключей с помощью перепутанных по времени пар фотонов. Технический результат - обеспечение ускоренного распределения секретных ключей между участниками коммуникации и увеличения дальности передачи секретных ключей. Способ генерации секретных ключей с помощью перепутанных по времени фотонных пар включает распределение между двумя участниками передачи секретных ключей фотонов из перепутанных по времени фотонных пар, дальнейшее преобразование этих фотонов интерферометрами участников, их детектирование детекторами одиночных фотонов и последующую обработку результатов измерений с помощью ЭВМ, включающую коммуникацию между участниками по открытому каналу связи. Дополнительно устанавливают согласованный между участниками временной интервал, в рамках которого проводят разделение на M равные подынтервалы и определяют подынтервалы, в которых у участников срабатывают детекторы одиночных фотонов, после чего номера этих подынтервалов используют в качестве элементов ключей. 1 з.п. ф-лы, 1 ил.

 


Наверх