Патенты автора Шупенев Александр Евгеньевич (RU)

Изобретение может быть использовано для соединения пластин паянного пластинчатого теплообменника (ППТО) из нержавеющей стали. Металлополимерную композицию получают путем механического смешивания компонентов на лопастном смесителе и его гранулирования. Композиция содержит металлический порошок марки 03Х17Н14М3 и органическое связующее при следующем их соотношении, мас. %: металлический порошок 92-94, органическое связующее 6-8. Органическое связующее состоит из полиэтилена высокого давления (ПВД), воска и стеариновой кислоты в качестве пластификатора при следующем соотношении компонентов связующего, мас. %: ПВД 9-15, воск 84-90, стеариновая кислота - 1. Упомянутый металлический порошок имеет размер частиц менее 40 мкм и содержит, мас. %: хром 16,8-18,3, никель 13,5-15,0, молибден 2,2-2,8, марганец 1-2, кремний не более 0,4, железо - остальное. Изобретение обеспечивает удобство и точность нанесения припоя при повышении качества соединений пластин ППТО за счет применения в композиции металлического порошка и полимерных добавок в заданных процентных соотношениях.

Изобретение относится к способу модификации поверхностей пластин паяного пластинчатого теплообменника (ППТО). В вакуумной камере размещают пластины и углеродсодержащую мишень. Осуществляют откачку камеры до требуемого уровня вакуума 10-5-10-7 Торр и лазерную обработку мишени с последующей конденсацией на поверхность пластины модифицированного слоя, содержащего алмазные фазы. Нанесение модифицированного слоя осуществляют путем испарения углеросодержащей мишени импульсным лазерным излучением с длиной волны 190-310 нм, длительностью импульсов 1-100 нс с частотой повторения 10-100 Гц и плотностью энергии на поверхности мишени 1-10 Дж/см2. Содержание алмазных фаз в модифицированном слое составляет от 5 до 15%, а толщина модифицированного слоя составляет от 30 до 300 нм. Над обрабатываемой поверхностью располагают трафарет для защиты участков пластины от нанесения модицифированного слоя на участки, предназначенные для последующего образования спая пластин ППТО друг с другом. Технический результат состоит в увеличении срока службы, снижении нагрузки на гидравлическую систему и повышении эффективности теплообмена и достигается за счет упрочнения поверхности и снижения гидродинамических потерь при содержании алмазных фаз в модифицированном слое от 5 до 15%. 1 з.п. ф-лы, 1 ил.

Изобретение о относится к устройству контроля и управления комплексом импульсного лазерного осаждения (ИЛО). Устройство содержит блок управления импульсным лазером, блок контроля параметров лазера, блок контроля температуры, блок управления температурой на подложке, блок контроля давления в камере осаждения, блок управления давлением в камере осаждения, блок контроля расстояния между подложкой и мишенью, блок управления расстоянием между подложкой и мишенью с соответствующими связями между собой и с комплексом ИЛО и блок предварительного имитационного моделирования процесса ИЛО кинетическим методом Монте-Карло с описанием движения и столкновений с поверхностью каждого отдельно взятого атома из потока осаждаемого вещества применительно к конкретной задаче, с возможностью проведения моделирования таких этапов процесса ИЛО, как поглощение излучения материалом мишени, образование и разлет газо-плазменного облака продуктов абляции, взаимодействие продуктов лазерной абляции с поверхностью подложки, формирование и рост пленки покрытия, с возможностью внесения настроек характеристик и свойств покрытия. Технический результат заключается в расширении функциональных возможностей с обеспечением максимальных характеристик и свойств получаемых покрытий, таких как: увеличение износостойкости поверхностей, повышение сплошности покрытия; получение однородного покрытия по всей поверхности и тем самым создание условий для ламинарного движения жидкости по полученному покрытию поверхности защищаемого изделия. 12 ил.

Изобретение относится к электротехнике и нанотехнологиям, в частности к способу изготовления термоэлектрического элемента для термоэлектрических устройств, например термоэлектрической батареи, и может быть использовано в потребительской электронике, медицине, лабораторном оборудовании и других областях. Сначала полученную гибкую ленту наматывают на барабан, который располагают в вакуумной камере. Осуществляют вакуумное напыление термоэлектрического материала на противоположные ее стороны. Ленту последовательно протягивают с помощью отклоняющих и натяжных роликов через первую зону нагрева и импульсного лазерного осаждения термоэлектрического материала p-типа проводимости на нагретый участок одной стороны ленты. Осуществляют переворот ленты в устройстве разворота и протягивают ленту через вторую зону локального нагрева до заданной температуры и импульсного лазерного осаждения термоэлектрического материала n-типа проводимости на нагретый участок противоположной стороны ленты. Затем протягивают ленту через зону одновременного формирования на двух сторонах ленты технологического рисунка путем лазерного испарения термоэлектрического материала на каждой из ее сторон. Осуществляют намотку ленты с полученным двусторонним технологическим рисунком на второй барабан. 2 ил.

Использование: для создания гибкого термоэлектрического модуля. Сущность изобретения заключается в том, что способ создания гибкого термоэлектрического модуля включает получение полиимидной пленки и напыление на нее в вакуумной камере посредством лазера функциональных слоев, полиимидную пленку получают на металлическом основании с полированной поверхностью, которое устанавливают на горизонтальную центрифугу, осуществляют его вращение и одновременно подают посредством дозатора на его рабочую поверхность раствор полиамидоимида в течение 30-120 с с получением заданной толщины пленки, основание с нанесенной пленкой полиамидоимида размещают в вакуумной камере с нагревателями и мишенями из материалов для создания буферного, полупроводниковых и коммутирующих слоев и осуществляют сушку пленки, затем осуществляют лазерное напыление функциональных слоев в несколько этапов: а) в камеру подают кислород и при одновременном вращении мишени и основания с нанесенной пленкой осуществляют лазерную абляцию мишени из титана с формированием на полиимидном слое буферного слоя оксида титана; б) камеру откачивают на высокий вакуум, включают нагреватель на 150-170°C в зависимости от толщины наносимого слоя, включают вращение мишени и вращение подложки, устанавливают маску для слоя ветвей n-типа и производят лазерную абляцию материала мишени n-типа с формированием ветвей n-типа на поверхности полиимида; в) устанавливают маску для слоя ветвей р-типа, подают в зону лазерного воздействия мишень р-типа проводимости, производят лазерную абляцию материала мишени р-типа с формированием ветвей р-типа на поверхности полиимида; г) устанавливают маску для коммутирующего слоя, подают в зону лазерного воздействия мишень для создания слоя металлизации, производят лазерную абляцию материала мишени, и создают слой металлизации, коммутирующий электрически последовательно между собой полупроводниковые ветви, и создают контактные площадки на концах термоэлектрического модуля, после создания функциональных слоев камеру развакуумируют, извлекают из основания, которое затем для отделения полученного модуля выдерживают в ультразвуковой ванне мощностью 25-50 Вт в течение 5 мин в деионизованной дистиллированной воде, термоэлектрический модуль снимают с основания и высушивают. Технический результат: обеспечение возможности повышения качества изделия. 9 з.п. ф-лы, 3 ил.

Изобретение относится к нанотехнологии и может быть использовано в технике, медицине и энергетике. Устройство для получения углеродных нанотрубок содержит реакционную камеру 12, в которой размещены подложкодержатель 1, нагреватель 2, подложка 3, входное окно 6, держатель 9 мишени 8, патрубок 11 ввода газов системы подачи реакционной газовой смеси и патрубок 10 системы вакуумирования. После вакуумирования камеры 12 на мишень 8, выполненную из материала катализатора, воздействуют импульсным лазерным излучением дополнительного источника, в результате чего осаждают на подложке 3 каталитический слой в виде отдельных капель 4. Через патрубок 11 вводят газовую смесь. Затем на полученном каталитическом слое фокусируют лазерное излучение 13 основного источника и сканируют его сканатором по заданной траектории для выращивания нанотрубок 7 по заданному рисунку. Используют лазерное излучение с длиной волны 0,248-10,6 мкм. Изобретения обеспечивают высокую производительность, уменьшение количества необходимого технологического оборудования и затрат. 2 н. и 2 з.п. ф-лы, 3 ил., 2 пр.

 


Наверх