Патенты автора Балабан Юрий Николаевич (RU)

Изобретение относится к камерам сгорания газотурбинных установок, работающим на газообразном углеводородном топливе и использующим в своей работе каталитические средства. Способ подготовки и сжигания топлива в камере сгорания газотурбинной установки включает подачу воздуха из-за компрессора в камеру сгорания, подачу в одну часть форсунок камеры сгорания газообразного углеводородного топлива, подачу в другую часть форсунок камеры сгорания газовой смеси, содержащей по меньшей мере СО и Н2, полученной путем смешения упомянутого газообразного углеводородного топлива с воздухом и пропусканием данной топливовоздушной смеси через предварительно нагретый катализатор. Газовую смесь на форсунки камеры сгорания подают с обеспечением перепада давления на указанных форсунках не менее 0,5 кгс/см посредством изменения давления воздуха и газообразного углеводородного топлива, формирующих топливовоздушную смесь, пропускаемую через катализатор. Коэффициент избытка воздуха топливовоздушной смеси находится в интервале от 0,25 до 0,32. Воздух для топливовоздушной смеси получают от стороннего источника воздуха, а предварительный нагрев катализатора осуществляют от независимого источника тепла. Изобретение позволяет упростить настройку газотурбинной установки под изменяемые режимы работы с сохранением экологических характеристик. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области газотурбинной техники и может использоваться в конструкциях двухвальных газотурбинных двигателей авиационного и стационарного назначения. Опора двухвального газотурбинного двигателя содержит подшипник опоры турбины высокого давления, установленный между роторами низкого и высокого давления, форсунку, сообщенную с магистралью подачи масла, для подачи масла через отверстия в валу ротора низкого давления на указанный подшипник, и окна, выполненные в цапфе вала ротора низкого давления. Опора снабжена дополнительной форсункой, сообщенной с магистралью подачи масла и установленной напротив окон в цапфе вала ротора низкого давления, для непосредственной подачи масла через них на подшипник опоры турбины высокого давления. Изобретение обеспечивает непосредственную смазку и охлаждение подшипника опоры турбины высокого давления на этапах запуска и останова газотурбинного двигателя, за счет чего повышается надежность и ресурс двухвального ГТД. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области измерительной техники, к испытаниям, доводке, диагностике и эксплуатации реактивных двигателей, а конкретно к способам диагностики технического состояния двухконтурного газотурбинного двигателя по газодинамическим параметрам потока. Диагностику технического состояния проводят при одной и той же, выбранной из рабочего диапазона приведенной частоте вращения ротора низкого давления, по приведенным к стандартным атмосферным условиям отклонениям текущих значений параметров от исходных. Приводятся зависимости, по которым определяют вышеуказанные отклонения. При этом отрицательные значения свидетельствуют о загрязнении газовоздушного тракта двигателя или утечках воздуха из тракта компрессора низкого давления, а положительные значения свидетельствуют об ухудшении КПД компрессора низкого давления и/или компрессора высокого давления, и/или турбины высокого давления, и/или турбины низкого давления, причем положительные значения и отрицательное значение свидетельствуют об отборе воздуха из тракта компрессора высокого давления. Технический результат - повышение точности и достоверности при диагностике состояния элементов проточной части двигателя и определение конкретного дефекта и его местонахождения. 1 ил., 2 табл.

Изобретение относится к газовым турбинам газотурбинных двигателей, - к рабочим охлаждаемым лопаткам турбин газотурбинных двигателей, используемым на приводах газоперекачивающих установок, в частности лопаткам, оснащенным развитой системой внутреннего конвективного охлаждения. Известная лопатка газовой турбины с конвективной системой охлаждения, содержащая перо, ограниченное входной кромкой и выходной кромкой со щелевым отверстием и профилированным участком с выпуклой и вогнутой стенками, ограничивающими охлаждаемую полость пера, отверстия в торцевой поверхности пера и реборду, профилированные ребра, образующие систему раздаточных и циклонных радиальных каналов в охлаждаемой полости пера, интенсификаторы охлаждения, выполненные в охлаждаемой полости, каналы в ее замковой части для подачи воздуха, каналы в замковой части сообщены с охлаждаемой полостью, с отверстиями в торцевой поверхности пера и со щелевым отверстием в выходной кромке, по предложению, профилированные ребра, образующие систему радиальных каналов, выполнены попарно одной длины, а расстояние от периферийных окончаний радиальных каналов до торцевой поверхности для каждой последующей пары в направлении от входной кромки к выходной кромке больше предыдущего. Реборда торца пера может быть расположена по образующей профиля выпуклой стенки и входной кромки. Применение изобретения позволяет уменьшить расход охлаждающего воздуха, упрощение и снижение технологических затрат на изготовление, повышение механической прочности и стойкости к загрязнениям, повышение КПД на 1,1% и ресурса лопатки и двигателя в целом на 5-10%.

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода газоперекачивающих агрегатов и энергоустановок. Периодически в каждый промежуток времени 0,01…0,1 с измеряют давление за компрессором высокого давления Рк и при отклонении величины давления более 1-100% относительно измерения, предшествовавшего текущим значениям, при постоянном значении n1, производят остановку двигателя. С момента начала падения давления за компрессором Рк предпочтительно давление измеряют в каждый промежуток времени, равный 0,02…0,05 с. Реализация изобретения позволяет предотвратить развитие помпажа двигателя, вызванного различными причинами (неправильная эксплуатация, повреждение рабочих лопаток и т.д.) при эксплуатации газотурбинного двигателя в наземной установке. Позволяет снизить затраты на восстановительный ремонт двигателей путем своевременной остановки и тем самым предотвращения развития разрушений в газовоздушном тракте и системах двигателя. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода газоперекачивающих агрегатов и энергоустановок. Давление газа измеряют за компрессором, в качестве параметра сравнения используют давление и частоту вращения ротора, измерения производят при постоянной температуре газа за турбиной через промежутки времени 0,2…0,5 с, а сравнивание измерений и определение пороговых отклонений производят, по крайней мере, по двум предшествующим и двум последующим текущим значениям параметров, а остановку двигателя производят при снижении частоты вращения ротора на 0,2…0,5% и давления за компрессором на 1,0…1,5%. Технический результат изобретения – предотвращение развития разрушения газовоздушного тракта двигателя, вызванного различными причинами (неправильная эксплуатация, повреждение рабочих лопаток и т.д.) при эксплуатации газотурбинного двигателя в наземной установке. 1 ил.

Изобретение относится к области авиадвигателестроения. Рабочее колесо третьей ступени вала ротора КНД ГТД содержит диск, включающий ступицу с центральным отверстием, полотно и обод, а также лопатки, имеющие каждая хвостовик и перо с профилем, образованным вогнутым корытом и выпуклой спинкой. Обод диска соединен с полотном с образованием разноплечих кольцевых конических наклонных полок. Радиус диска Rд от оси до внешней поверхности обода в средней плоскости полотна составляет (0,59÷0,84) от радиуса Rп.ч. периферийного контура проточной части в указанной плоскости. Обод диска снабжен равномерно разнесенной по периметру диска системой пазов для закрепления лопаток. Продольная ось каждого паза образует с осью вала ротора в проекции на условную осевую плоскость, нормальную к радиальной оси пера лопатки, угол α установки хвостовика лопатки, определенный в диапазоне значений α=(17÷25)°. Лопатка выполнена с переменным по высоте пера углом установки профиля пера относительно фронтальной линии решетки профилей лопаточного венца, убывающим с радиальным удалением от оси ротора с градиентом . Кроме того, перо лопатки выполнено переменной по ширине и высоте пера толщиной. Максимальная толщина профиля пера лопатки выполнена наибольшей в корневом сечении и убывающей по высоте пера к периферийному торцу с градиентом . Изобретение позволяет повысить КПД и увеличить запас газодинамической устойчивости на всех режимах работы компрессора при повышении ресурса рабочего колеса ротора КНД без увеличения материалоемкости. 2 н. и 17 з.п. ф-лы, 6 ил.

Изобретение относится к области авиадвигателестроения. Рабочее колесо первой ступени вала ротора компрессора низкого давления газотурбинного двигателя (КНД ГТД) содержит диск, включающий ступицу с центральным отверстием, полотно и обод, а также лопатки, имеющие, каждая, хвостовик и перо с профилем, образованным вогнутым корытом и выпуклой спинкой. Обод диска соединен с полотном с образованием разноплечих кольцевых конических наклонных полок. Внешняя поверхность обода выполнена с углом наклона образующей относительно оси вала ротора, радиус которого монотонно изменяется в сторону потока рабочего тела с градиентом радиального расширения Gоб=(0,32÷0,46) [м/м]. Обод диска снабжен равномерно разнесенной по периметру диска системой пазов для закрепления лопаток. Продольная ось каждого паза образует с осью вала ротора в проекции на условную осевую плоскость, нормальную к радиальной оси пера лопатки, угол α установки хвостовика лопатки, определенный в диапазоне значений α=(16,8÷24,1)°. Лопатка выполнена с переменным по высоте пера углом γ установки профиля пера относительно фронтальной линии решетки профилей лопаточного венца, убывающим с радиальным удалением от оси ротора с градиентом Gу.п=(144,9÷208,3) [град/м]. Кроме того, перо лопатки выполнено переменной по ширине и высоте пера толщиной. Максимальная толщина профиля пера лопатки выполнена наибольшей в корневом сечении и убывающей по высоте пера к периферийному торцу с градиентом Gу.т.=(1,0÷1,44)·10-2 [м/м]. Изобретение позволяет повысить КПД и увеличить запас газодинамической устойчивости на всех режимах работы компрессора при повышении ресурса рабочего колеса ротора КНД без увеличения материалоемкости. 2 и 17 з.п. ф-лы, 6 ил.

Изобретение относится к области авиадвигателестроения. Передняя опора вала ротора КНД ГТД содержит роликоподшипник, разделяющий опору на статорную и роторную части. Статорная часть включает корпус опоры, который соединен с корпусом роликоподшипника и охвачен ступицей ВНА с образованием компактных кольцевых полостей. Одна полость снабжена упругим кольцом. Другая кольцевая полость содержит элемент упругого демпфирования колебаний вала с системой упругих балочек. Статорная часть опоры включает формообразующие кольцевые элементы полостей наддува воздуха, суфлирования и масляной. Роторная часть опоры включает цапфу передней опоры, состоящую из полого цилиндрического участка, с установленными на нем внутренним кольцом роликоподшипника и двумя гребешковыми кольцами лабиринтов, разделяющими масляную и суфлирующую полости, а также суфлирующую полость и полость наддува воздуха, объем которой ограничен третьим гребешковым кольцом лабиринта, установленным на конической диафрагме цапфы. Элемент упругого демпфирования колебаний вала ротора включает систему продольно ориентированных упругих балочек, расположенных по периметру корпуса опоры с угловой частотой γп.б.к., определенной в диапазоне γп.б.к.=(7,2÷14,4) [ед/рад]. Балочки разделены прорезями, ширина которых в (1,1÷2,4) раза превышает ширину балочек. Корпус опоры наделен тремя фланцами, наделенными группами отверстий соответственно для центрирования, крепления, демонтажа и отвода масла. Технический результат группы изобретений заключается в расширении диапазона рабочих режимов устойчивой работы двигателя с демпфированием колебаний вала ротора без вхождения в резонансные частоты и повышением ресурса компрессора и двигателя в целом. 5 н. и 18 з.п. ф-лы, 8 ил.

Изобретение относится к области авиадвигателестроения. Диск последней ступени ротора компрессора низкого давления ГТД выполнен в виде моноэлемента, включает обод, переходящий в кольцевое полотно, усиленное ступицей, снабженной центральным отверстием. Обод симметрично соединен с полотном диска с образованием равноплечих кольцевых полок. Полотно диска выполнено с возможностью разъемного соединения через проставку с полкой диска предшествующей ступени. Обод диска выполнен с возрастающим в сторону потока рабочего тела в осевом сечении КНД радиусом и с углом φ=(1,8÷3,4)° образующей внешней поверхности обода относительно оси вала ротора. Обод диска снабжен системой пазов для закрепления лопаток. Продольная ось каждого паза образует с осью вала ротора в проекции на условную осевую плоскость, нормальную к продольной оси пера лопатки, угол α установки хвостовика лопатки, определенный в диапазоне значений (20,1÷29,2)°. Пазы равномерно разнесены по периметру диска с угловой частотой Yп=(5,8÷7,9) [ед/рад] и выполнены в поперечном сечении с боковыми гранями, образующими элемент замкового соединения с хвостовиком лопатки. Достигается повышение КПД и расширение диапазона режимов газодинамической устойчивости компрессора на 2,1% при повышении ресурса диска в 2 раза. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения. Диск второй ступени ротора компрессора низкого давления ГТД выполнен в виде моноэлемента, включает обод, переходящий в кольцевое полотно, усиленное ступицей, снабженной центральным отверстием. Обод асимметрично соединен с полотном диска с образованием разноплечих кольцевых конических наклонных полок. Обод диска выполнен с возрастающим в сторону потока рабочего тела в осевом сечении КНД радиусом и с углом образующей внешней поверхности обода относительно оси вала ротора, идентичным осевому углу относительно той же оси образующей внутреннего контура проточной части. Радиус диска Rд от оси до внешней поверхности обода в средней плоскости полотна составляет (0,54÷0,77) от радиуса Rп.ч. периферийного контура проточной части в указанной плоскости. Обод диска снабжен системой пазов для закрепления лопаток. Продольная ось каждого паза образует с осью вала ротора в проекции на условную осевую плоскость, нормальную к радиальной оси пера лопатки, угол α установки хвостовика лопатки, определенный в диапазоне значений α=(19÷27)°. Пазы равномерно разнесены по периметру диска с угловой частотой Yп=(6,0÷8,2) [ед./рад] и выполнены в поперечном сечении с боковыми гранями, образующими элемент замкового соединения с хвостовиком лопатки. Достигается повышение КПД и расширение диапазона режимов газодинамической устойчивости компрессора на 2,1% при повышении ресурса диска в 2 раза. 4 н. и 13 з.п. ф-лы, 4 ил.

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода газоперекачивающих агрегатов и энергоустановок. Перед запуском двигателя в нагнетающую магистраль подают масло через дополнительный маслонасос и дополнительную магистраль, масло подают до заполнения нагнетающей магистрали, а полноту заполнения нагнетающей магистрали определяют по моменту появления масла на сливе из опор двигателя или одновременно при появлении масла на сливе из опор двигателя и достижении заданной величины давления масла в нагнетающей магистрали, после чего, дополнительный маслонасос отключают и запускают двигатель. Технический результат изобретения - предотвращение запуска двигателя с незаполненной маслосистемой и исключение выхода из строя двигателя в результате повышенного износа подшипников при эксплуатации газотурбинного двигателя в наземной установке. 1 ил.

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода нагнетателя газоперекачивающих агрегатов, контролю технического состояния и его восстановлению. Перед началом прокрутки двигателя предварительно производят очистку входного направляющего аппарата и рабочих лопаток первой ступени компрессора, а перед подачей моющего раствора дополнительно в систему наддува предмасляных полостей опор двигателя и в коллектор подачи топлива к топливным форсункам подают сжатый воздух и через 10…15 с после завершения подачи моющего раствора подачу сжатого воздуха перекрывают, при этом моющий раствор, через по крайней мере одну форсунку по тракту осевого компрессора подают в направлении, обратном направлению потока. Технический результат изобретения - исключение попадания моющего раствора в топливный коллектор и форсунки подачи топлива, а также исключение возможности попадания моющего раствора в масляную систему двигателя. 1 ил.

 


Наверх