Патенты автора Шутин Денис Владимирович (RU)

Изобретение относится к области машиностроения, в частности к способам управления радиально-осевыми движениями ротора с использованием гидродинамических подшипниковых узлов скольжения, воспринимающих основную нагрузку. Способ включает операцию, при которой, осуществляют регулирование положения ротора за счет приложения усилия на торец втулки управляемого подшипникового узла после поступления сигналов о величине температуры, давления, осевого и радиального перемещения в режиме реального времени, переданных от измерительного блока на блок сбора, обработки и управления сигналами, оснащенный программным обеспечением, основанным на предварительно обученной нейронной сети. Регулирование положения ротора приводит к уменьшению зазора между внутренней втулкой и ротором и смещению вращающегося ротора в сторону второго подшипникового узла. Подшипниковые узлы скольжения выполнены коническими, один из них является управляемым. Достигается повышение надежности. 1 ил.

Изобретение относится к области машиностроения и может быть использовано при проведении научных исследований в области подшипников скольжения, а также в учебном процессе при проведении лабораторных работ и практических занятий по общеинженерным дисциплинам в высших и средних специальных учебных заведениях. Установка представляет собой роторно-опорную систему, включающую приводимый во вращение частотно-регулируемым электроприводом вал, опирающийся на пассивный и активный гидростатодинамические подшипники. При этом подведение смазочного материала к питающим камерам активного подшипника осуществляется с раздельным регулированием его давления и расхода для каждой камеры при помощи сервоклапанов. Момент трения вала в подшипниках напрямую измеряется установленным между электродвигателем и валом датчиком крутящего момента, причем уплотнение пассивного подшипника выполнено воздушным с подведением воздуха от компрессорной станции с редукционным клапаном. Смазочная система установки включает в себя бак со смазочным материалом, фильтр, насосную станцию, предохранительный клапан и подающий коллектор, от которого смазочный материал подается к подшипникам. Давление смазочного материала контролируется манометрами и датчиками давления, радиальные перемещения вала контролируются датчиками перемещения, сигналы от всех датчиков поступают на блок управления, сбора и обработки сигналов, а к его выходам подсоединены частотный регулятор электропривода и сервоклапаны. Технический результат заключается в расширении области исследования роторных систем за счет возможности получения дополнительной информации о моменте трения в подшипниках и возможности изменения трибологических характеристик активного подшипника за счет раздельного регулирования давления подаваемого в него смазочного материала, не принимая в расчет трения, создаваемого в уплотнениях. 3 ил.

Изобретение относится к области машиностроения и может быть использовано в быстровращающихся, высоконагруженных роторных машинах. Активная гидростатическая опора с регулируемым давлением подачи смазочного материала содержит корпус, в котором выполнены радиально расположенные выходные отверстия, вал, взаимодействующий посредством масляного клина с радиально расположенными карманами, представляющими собой углубления, например, выполненные в виде отверстий, которые, в свою очередь, соединены через дроссели с подающей магистралью. Карманы выполнены на внутренней поверхности втулки подшипника скольжения, установленной в корпусе, в котором размещены датчики перемещений, связанные через систему управления с линейными приводами электромагнитного, пьезоэлектрического, гидравлического, пневматического, магнитострикционного или комбинированного принципа действия, изменяющими положение запорно-регулирующих элементов дросселей, смонтированных в корпусе гидростатической опоры и во втулке подшипника скольжения, в которой дополнительно выполнены выходные отверстия для сливных магистралей. Технический результат: улучшение динамических характеристик, повышение надежности и ресурса системы "ротор-опоры", избегание неблагоприятных режимов работы опоры, за счет применения программно-аппаратного комплекса, уменьшение масса-габаритов. 2 ил.

Изобретение относится к области машиностроения и может быть использовано в быстровращающихся, высоконагруженных роторных машинах. Комбинированная опора содержит корпус и размещенные в нем подшипник скольжения и подшипник качения, расположенные параллельно относительно поверхности вала. Подшипник качения установлен на коническом участке вала через втулку с внутренней конической поверхностью с возможностью перемещения относительно вала в осевом направлении под действием линейных пьезоприводов, установленных в корпусе и подключенных к источникам питания. Технический результат: улучшение динамических характеристик, повышение надежности и ресурса системы "ротор - опоры" за счет включения, выключения подшипника качения из работы под действием линейных пьезоприводов. 2 ил.

Изобретение относится к области машиностроения и может быть использовано в быстровращающихся, высоконагруженных роторных машинах. Комбинированная опора содержит корпус и размещенные в нем последовательно на валу подшипник качения, наружное кольцо которого установлено в корпусе с использованием упругих колец таким образом, что подшипник качения может перемещаться относительно оси вала в радиальном направлении под действием внешних нагрузок, и подшипник скольжения. С увеличением частоты вращения вала в каналах подшипника скольжения появляется гидростатодинамическая реакция, уменьшающая нагрузку на подшипник качения, в результате чего происходит перераспределение внешней нагрузки между подшипником качения и подшипником скольжения. На внутренней поверхности корпуса установлены пьезоактуаторы, подключенные к источнику напряжения и способные в результате собственных деформаций перемещать подвижные колодки относительно оси вала в осевом направлении. Технический результат: повышение надежности, долговечности, улучшение динамических характеристик системы ротор - опора и уменьшение амплитуды колебаний ротора за счет включения, выключения упругих колец с помощью изменения напряжения, подаваемого на пьезоактуаторы. 2 ил.

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными нагрузками, в системах кондиционирования воздуха кабин летательных аппаратов, а также систем турбонаддува в современном автомобилестроении. Лепестковый газодинамический подшипник с активным управлением содержит корпус (1), в который вставлены от 16 до 24 пьезоактуаторов (3), расположенных равномерно по окружности корпуса (1), на которые опирается круговой гофрированный элемент (10), на который, в свою очередь, опирается тонкий лепесток (11), охватывающий вал (12), а также позволяющих снимать данные о положении вала и деформациях опорной поверхности и варьировать жесткостью опорной поверхности. Технический результат: повышение надежности и долговечности подшипникового узла, ресурса работы, устойчивости движения и подавление биений валов и роторов за счет пьезоактуаторов, с помощью которых можно управлять жесткостью опорной поверхности. 1 з.п. ф-лы, 4 ил.

 


Наверх