Патенты автора Каплар Евгений Петрович (RU)

Изобретение относится к области термоэлектрического преобразования тепловой энергии в электрическую и может быть применено для изготовления полупроводниковых термоэлементов и термоэлектрических батарей из них, используемых в конструкциях термоэлектрических генераторов. Технический результат: повышение производительности изготовления и энергетической эффективности термоэлектрических батарей. Сущность: формируют плоскую или радиально-кольцевую конфигурацию термобатареи с бифилярным или аксиальным соединением ветвей в электрическую цепь путем размещения в ячейках матричной кассеты из электроизоляционных прокладок ветвей из низко-, средне- и высокотемпературных термоэлектрических материалов и нанесения электропроводящих слоев и электроизоляционного покрытия. При этом барьерные антидиффузионные и контактные слои на теплопоглощающей и тепловыделяющей поверхностях ветвей и электроизоляционное покрытие наносят методом холодного газодинамического напыления порошков требуемого функционального состава. После нанесения контактного слоя проводят его механическую обработку. 8 з.п. ф-лы, 5 ил.

Изобретение относится к области термоэлектрического приборостроения и может быть использовано при изготовлении термоэлектрических устройств, основанных на эффекте Пельтье или Зеебека, прежде всего термоэлектрических генераторов электрической энергии, а также холодильных термоэлектрических устройств. В термоэлементе термоэлектрической батареи искусственно создается анизотропия тепловой проводимости, обеспечивающая увеличение токовой высоты и термического сопротивления ветвей термоэлемента в ограниченном объеме по высоте, благодаря чему удается увеличить перепад температуры на спаях при сохраняющейся плотности теплового потока, за счет этого увеличивается КПД преобразования тепловой энергии в термоэлектрическом устройстве. Для достижения этого результата предложена термоэлектрическая батарея, содержащая термоэлементы, ветви которых изготовлены из полупроводников p- и n-типа, разделенных электроизоляцией, и коммутационные пластины, при этом ветви термоэлементов выполнены под углом по отношению к теплопоглощающей и тепловыделяющей поверхностям термоэлемента, а токовую высоту ветви Lт выбирают в диапазоне где h - габаритная высота ветви термоэлемента, мм, Lт - токовая высота ветви термоэлемента, мм, δ - межэлементный зазор между ветвями p и n типов (электроизоляция), мм, κмат - среднеинтегральная удельная теплопроводность материала термоэлемента, λ - среды - удельная теплопроводность среды, заполняющей зазор δ между ветвями, При этом сечение ветви термоэлемента, параллельное токовым линиям, представляет собой параллелограмм с углом наклона α основания к теплопоглощающей стороне термоэлемента, или шеврон, параллельные или эквидистантные стороны которого примыкают к теплопоглощающей и тепловыделяющей сторонам термоэлемента, или кольцевой сектор, тороидальные поверхности которого образуют боковые поверхности ветвей термоэлемента, а поверхности, примыкающие к теплопоглощающей и тепловыделяющей сторонам термоэлемента, эквидистантны этим поверхностям. Угол наклона ветви термоэлемента к теплопоглощающей стороне α должен быть равен или больше величины, определяемой из соотношения . 4 з.п. ф-лы, 3 ил.

Изобретение относится к ядерным термоэлектрическим установкам. Для достижения этого результата предложена подводная ядерная термоэлектрическая установка, содержащая расположенные в газоплотной защитной оболочке легководный ядерный реактор и блоки термоэлектрические (БТЭ), равномерно расположенные вокруг реактора и состоящие из корпуса с размещенными в нем термоэлектрическими модулями, при этом корпус в нижней и верхней частях имеет патрубки входа охлаждающей воды и патрубок выхода охлаждающей воды, а корпус ядерного реактора соединен напорными и сливными коллекторами теплоносителя с коллекторами раздачи и сбора теплоносителя термоэлектрических модулей. Газоплотная защитная оболочка может быть выполнена сферической и составной, а термоэлектрические модули выполнены в виде трубки Фильда. Технический результат - уменьшение тепловых потерь, снижение температурных перепадов конструктивных элементов, исключение коррозионного воздействия морской воды на корпус реактора, создание дополнительного барьера для локализации последствий аварийных ситуаций. 6 ил.

 


Наверх