Патенты автора Устинов Василий Сергеевич (RU)

Изобретение относится к средству определения быстродействия и точности вычислителя реактивности. Сигнал плотности потока нейтронов аттестованной по реактивности математической модели ядерного реактора вводят в формирователь сигнала детектора, в котором сигнал плотности потока нейтронов преобразуют в сигнал, идентичный реальному сигналу нейтронного детектора, который направляют в преобразователь сигнала нейтронного детектора в электрический сигнал, преобразованный электрический сигнал нейтронного детектора подают на вход аттестуемого вычислителя реактивности, из которого сигнал реактивности аттестуемого вычислителя реактивности направляют в регистрирующую аппаратуру. Далее этот сигнал сравнивают с эталонной величиной реактивности, по разнице которых аттестуют вычислитель реактивности. Техническим результатом является повышение достоверности и точности определения показателей погрешности и быстродействия при физическом пуске и эксплуатации ядерного реактора. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области термоэлектрического преобразования тепловой энергии в электрическую и может быть применено для изготовления полупроводниковых термоэлементов и термоэлектрических батарей из них, используемых в конструкциях термоэлектрических генераторов. Технический результат: повышение производительности изготовления и энергетической эффективности термоэлектрических батарей. Сущность: формируют плоскую или радиально-кольцевую конфигурацию термобатареи с бифилярным или аксиальным соединением ветвей в электрическую цепь путем размещения в ячейках матричной кассеты из электроизоляционных прокладок ветвей из низко-, средне- и высокотемпературных термоэлектрических материалов и нанесения электропроводящих слоев и электроизоляционного покрытия. При этом барьерные антидиффузионные и контактные слои на теплопоглощающей и тепловыделяющей поверхностях ветвей и электроизоляционное покрытие наносят методом холодного газодинамического напыления порошков требуемого функционального состава. После нанесения контактного слоя проводят его механическую обработку. 8 з.п. ф-лы, 5 ил.

Использование: в области электроэнергетики. Техническим результатом является упрощение конструкции, повышение срока службы, повышение надежности и автономности работы. Подводный модуль для производства электрической энергии включает средство, в котором размещены электрические энергоблоки, включающие ядерные реакторы, связанные со средствами производства электрической энергии, электрические кабели, опорные средства. Энергоблоки размещены на подводной несущей проницаемой платформе, выполненной с возможностью ее стационарной установки на дне на вертикальных опорах и включающей посадочные места для энергоблоков с направляющими устройствами и средствами защиты и конвекторы, электрически разъемно соединенные с электротехническим отсеком в виде прочного корпуса с электротехническим оборудованием, который установлен за счет его отрицательной плавучести на центральной продольной оси платформы и снабжен средствами балластировки, люк-шлюзом, комингс-площадкой, входными и как минимум одним выходным сильноточными разъемами. При этом энергоблоки выполнены в виде подводных ядерных термоэлектрических установок и состыкованы с подводной платформой в посадочных местах по обе стороны вдоль электротехнического отсека разъемными механическими и электрическими соединениями. 15 з.п. ф-лы, 3 ил.

Изобретение относится к ядерным термоэлектрическим установкам. Для достижения этого результата предложена подводная ядерная термоэлектрическая установка, содержащая расположенные в газоплотной защитной оболочке легководный ядерный реактор и блоки термоэлектрические (БТЭ), равномерно расположенные вокруг реактора и состоящие из корпуса с размещенными в нем термоэлектрическими модулями, при этом корпус в нижней и верхней частях имеет патрубки входа охлаждающей воды и патрубок выхода охлаждающей воды, а корпус ядерного реактора соединен напорными и сливными коллекторами теплоносителя с коллекторами раздачи и сбора теплоносителя термоэлектрических модулей. Газоплотная защитная оболочка может быть выполнена сферической и составной, а термоэлектрические модули выполнены в виде трубки Фильда. Технический результат - уменьшение тепловых потерь, снижение температурных перепадов конструктивных элементов, исключение коррозионного воздействия морской воды на корпус реактора, создание дополнительного барьера для локализации последствий аварийных ситуаций. 6 ил.

 


Наверх