Патенты автора Иванов Константин Александрович (RU)

Изобретение относится к области безопасных средств взрывания, а именно лазерных средств инициирования с использованием взрывчатых веществ. Лазерный воспламенитель содержит установленные соосно в корпусе 1 металлическую втулку 3 с расположенной внутри нее градиентной линзой 2, закрепленной при помощи клеевого соединения, на торцевые поверхности которой нанесено покрытие из просветляющего материала 4. Заряд взрывчатого вещества выполнен в виде навесок - инициирующей 5 и выходной 6 из пиротехнического состава. Металлическая втулка 3 граничит с инициирующей навеской 5. В качестве градиентной линзы 2 может быть использовано оптоволокно или оптическая керамика. Обеспечивается повышение надежности срабатывания устройства, за счет снижения потерь лазерного излучения, повышение инициирующей способности и безопасности, сохранения целостности узла ввода излучения при разгрузке давления, формируемого продуктами сгорания. 5 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам создания реактивной тяги, конкретно к электрическим реактивным движителям (ЭРД). ЭРД содержит последовательно и соосно установленные по течению воздушного потока дельтовидные крылья 1, воздухозаборник 2, направляющие лопатки 3, многолопастную крыльчатку 4 с приводом от вентильного электродвигателя 5, а также реактивное сопло 6. Внутри сопла 6 условлено центральное тело 7, закрепленное внутри сопла 6 спрямляющими лопатками 8. На внешней поверхности центрального тела 7 в воздушно-реактивной струе ЭРД установлены рули 9, а внутри тела 7 - рулевые машинки 10, кинематически соединенные с рулями 9. Такое конструктивное исполнение ЭРД позволяет управлять угловым направлением его вектора тяги, компенсировать положение струйных рулей остаточной закрутки реактивной струи ЭРД, препятствуя его угловому вращению и образованию крена. В целом указанные технические преимущества позволяют повысить надежность управления ЭРД и обеспечить достижение заявленного технического результата и решение поставленной задачи. 4 ил.

Изобретение относится к активным головкам самонаведения и может быть использовано в качестве бортового элемента летательных аппаратов как средство наведения на воздушные цели. Активная головка самонаведения содержит корпус 1, на внешней поверхности которого установлены флюгарки 4 с датчиками 8 их углового положения. Внутри корпуса 1 установлены блок 10 источников излучения 10.1 и оптическая система 2 линз с полосовым оптическим фильтром 3. Фильтр 3 установлен после оптической системы 2 линз перед фотоприемным устройством. Фотоприемное устройство выполнено в виде решетки 9 фотоприемников 9.1, установленных перед передней фокальной плоскостью оптической системы 2. Источники 10.1 выполнены расколлимированными, то есть имеют расширенную диаграмму направленности. Выходы фотоприёмников 9.1 соединены с платой 11 аналоговой обработки сигналов. Плата 11 содержит последовательно соединенные блок операционных усилителей 11.1 и блок пиковых детекторов 11.2. Выходы пиковых детекторов 11.2 соединены с платой 12 цифровой обработки сигналов. Плата 12 цифровой обработки сигналов содержит многоканальный аналогово-цифровой преобразователь 12.1, компаратор 12.2 и электронно-вычислительную машину (ЭВМ) 12.3. Вторые сигнальные входы ЭВМ 12.3 соединены с сенсорными датчиками 8 углового положения флюгарок 4, а управляющий выход ЭВМ 12.3 соединен через генератор 13 сильноточных импульсов с входами блока 10 источников излучения 10.1. Блок 10 импульсных источников содержит не менее одного импульсного источника 10.1 подсветки цели, а решетка 9 - не менее трех фотоприемников 9.1. ЭВМ 12.3 обработки сигналов выполнена на основе ARM (Advanced RISC Machine) архитектуры с математическим сопроцессором на общем кристалле. Сигнальный выход ЭВМ 12.3 соединен с выходной шиной головки самонаведения. Технический результат – повышение надежности работы головки самонаведения. 2 з.п. ф-лы, 8 ил.

Изобретение относится к ракетам, использующим для создания воздушной реактивной тяги и полета электрическую энергию бортового источника электроэнергии. Технический результат - повышение маневренности ракеты, точности наведения на цель и надежности работы. Электроракета – ЭР содержит пустотелый корпус, с головной стороны которого установлена головка самонаведения. В хвостовой части установлен электрический реактивный движитель – ЭРД. Он содержит многолопастную крыльчатку. Внутри корпуса ЭР установлены управляющий вычислительный модуль, регулятор хода и вентильный электродвигатель. На валу упомянутого электродвигателя закреплена многолопастная крыльчатка. При этом ЭР выполнена с возможностью измерения углового рассогласования ее оси с заданным направлением траектории ее движения в процессе полета с помощью блока флюгарок, установленных на головной части корпуса ЭР. Цифровые датчики ее углов по цифровому интерфейсу соединены с головкой самонаведения и управляющим вычислительным модулем. Этот модуль выполнен с возможностью отработки измеренных рассогласований, выдачу корректирующего сигнала на рули управления, сведения к нулю величины рассогласования и поддержания оси ЭР с направлением траектории ее движения. Рули управления ЭР установлены в реактивном воздушном потоке, создаваемом крыльчаткой ЭРД, и связаны через рулевые приводы с управляющим вычислительным модулем электроракеты. 10 з.п. ф-лы, 6 ил.

Изобретение относится к средствам противоздушной обороны и конкретно к способу перехвата летательных аппаратов - ЛА самонаводящейся электроракетой - ЭР. Технический результат - повышение вероятности поражения ЛА за счет возможности повторной атаки ЭР. По способу осуществляют развертывание пусковых установок ЭР на территории обороняемого объекта. Рассчитывают множество допустимых траекторий полетов ЭР для перехвата опасных ЛА с требуемой вероятностью их поражения. Активируют аккумуляторные батареи ЭР, выбранных для перехвата ЛА. Вводят в память бортовой электронно-вычислительной машины - ЭВМ ЭР массив данных о траектории полета ЭР, старт ЭР и вывод их в зону видимости ЛА головкой самонаведения - ГСН ЭР. Включают режим самонаведения ЭР и обеспечивают безогневое поражение ЛА. При этом траекторию полета ЭР в зону повторной видимости ГСН рассчитывают на борту ЭР. Предусматривают разворот ЭР путем снижения ее путевой скорости и перекладки струйных рулей в угловое положение, соответствующее максимальному аэродинамическому качеству струйного руля. Угловое рассогласование оси ЭР с заданным направлением траектории ее движения измеряют блоком флюгарок. Отработку измеренного рассогласования, выдачу корректирующего сигнала на рули управления, сведение к нулю величины рассогласования и поддержание оси ЭР с направлением траектории ее движения производят с помощью управляющего вычислительного модуля ЭР. 6 з.п. ф-лы, 12 ил.

Изобретение относится к локационным системам, использующим электромагнитные волны иные, чем радиоволны, конкретно к оптоэлектронным измерителям координат воздушных целей, и может быть использовано в бортовых и наземных локационных системах. Оптоэлектронный измеритель координат воздушных целей содержит корпус 1. Внутри корпуса 1 под светопрозрачным обтекателем 2 установлен приемоизлучающий объектив 3. Объектив 3 содержит блок 4 импульсных источников 4.1 подсветки цели и приемную оптическую систему 5. Система 5 включает последовательно установленные собирающую линзу 5.1, узкополосный оптический фильтр 5.2, и решетку 6 фотоприемников 6.1. Фотоприемники 6.1 расположены перед фокальной плоскостью 5.3 собирающей линзы 5.1. Выходы фотоприемников 6.1 через усилители 7 и пиковые детекторы 8 соединены с входами АЦП 9 и компаратора 10, соединенных по выходу с сигнальными входами ЭВМ 11. Формирователь 11.9 зондирующих импульсов ЭВМ 11 соединен с входами блока 4 импульсных источников 4.1 подсветки цели. Выход ЭВМ 11 по текущему угловому положению цели в азимутальной α и угломестной β плоскостях, относительным угловым скоростям , в соответствующих плоскостях, а также по текущей дальности L до цели соединен с выходной шиной 12 измерителя. Технический результат заключается в снижении массогабаритных характеристик и повышении надежности работы за счет исключения электромеханических элементов сканирования. 2 з.п. ф-лы, 7 ил.

Изобретение относится к способу получения фитостерина путем экстрагирования сульфатного мыла и обработки органическим растворителем, причем перед экстракцией сульфатное мыло растворяют в воде до полного растворения, затем к раствору добавляют спирт и бензин, отделяют бензиновый экстракт от спиртово-мыльного раствора, затем спиртово-мыльный раствор подвергают многоступенчатой экстракции бензином, далее бензиновый экстракт промывают, концентрируют путем отгонки растворителя до 1/3 от общего объема экстракта, охлаждают, кристаллизируют. Технический результат - повышение выхода и чистоты фитостерина. 1 табл., 3 пр.

 


Наверх