Патенты автора Мисбахов Ринат Шаукатович (RU)

Изобретение относится к радиоизмерительной технике, а именно к измерению температурного поля нагрева СВЧ-излучением в закрытых камерах, и предназначено для контроля распределения электромагнитного и теплового поля нагрева СВЧ-излучением. Согласно заявленному решению преобразователи с волоконно-оптическим датчиком температуры 2 в виде матрицы M×N термочувствительных непроводящих элементов, которые последовательно соединены волокном 8, размещённых на диэлектрическом основании 1, помещают в исследуемое поле системы 3. Включают СВЧ-нагрев на время, чтобы преобразователи 2 нагревались до температуры 60-300°С. Для измерения температуры преобразователей 2 через циркулятор 6 засвечиваются излучением широкополосного лазерного диода 4 с помощью оптического фильтра 5. Отраженное от преобразователей 2 излучение через второе плечо циркулятора 6 попадает на оптический фильтр с наклонной линейной характеристикой 9 и далее на фотоприемник 10 с полосой пропускания, равной максимальной адресной частоте, присущей структурам массива. Обработанный АЦП 11 сигнал с выхода фотоприемника 10 поступает на ПЭВМ 7. ПЭВМ, используя калибровочные характеристики ТП, МАВБС и ОФНЛХ, вычисляет распределения тепловых полей в рабочей камере и как решение обратной задачи распределение интенсивности ЭМП в ней. Технический результат - изобретение позволяет минимизировать искажение структуры исследуемого поля, а также определяется отсутствием взаимодействия измеряемых ЭМП и элементов измерительной аппаратуры, высоким быстродействием, устойчивостью к воздействию электромагнитных помех, диэлектрическим характером соединений в системах, пожаробезопасностью, малыми массой и габаритами, работоспособностью в широком диапазоне температур и, наконец, возможностью объединения в волоконно-оптическую систему съема, передачи и обработки информации, управления и синхронизации процессов. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области силовых установок и может быть использовано в целях повышения эффективности группы силовых установок. Техническим результатом является повышение эффективности пуска группы первичных электродвигателей и сглаживания графиков нагрузок при эксплуатации автономных газопоршневых и дизель-генераторных установок с использованием аккумуляторных батарей большой мощности. Объединенная система пуска и сглаживания графиков нагрузок группы автономных газопоршневых и дизель-генераторных установок с использованием аккумуляторных батарей большой мощности, включающая операции преобразования внутренней энергии топлива в электрическую стандартной частоты и напряжения, аккумулирования электрической энергии в батареи конденсаторов при режиме нормального электропотребления, подачи электрической энергии с батареи конденсаторов и аккумуляторной батареи на вход преобразователя частоты и напряжения, взаимосвязанные операции вычисления реактивной мощности в блоке датчиков реактивного тока, вывод результатов работы датчика реактивной мощности на вход преобразователя частоты и форсировка силовой установки по реактивной мощности, где вместо обычных пусковых батарей на каждой из N энергоустановок установлены две общие группы аккумуляторных батарей большой мощности, соединенных между собой первым двухполюсным выключателем, которые в нормальном режиме подключены между собой последовательно и работают через преобразователь частоты и напряжения и подключенный последовательно согласующий трансформатор на сеть для сглаживания графиков нагрузки, первая группа батарей соединена с первичными двигателями энергоустановок через второй, третий и четвертый двухполюсные выключатели и используется для пуска автономных газопоршневых и дизель-генераторных установок, в режиме максимальной выдачи мощности в сеть и одновременно пуске двигателей, группы батарей могут работать автономно при разомкнутом первом двухполюсном выключателе и замкнутом однополюсном выключателем. 1 ил.

Изобретение относится к области электротехники. Технический результат заключается в повышении эффективности пуска первичных электродвигателей и сглаживания графиков нагрузок при эксплуатации автономных газопоршневых и дизель-генераторных установок с использованием аккумуляторных батарей большой мощности. Достигается тем, что объединенная система пуска и сглаживания графиков нагрузок автономных газопоршневых и дизель-генераторных установок с использованием аккумуляторных батарей большой мощности, включающая операции преобразования внутренней энергии топлива в электрическую стандартной частоты и напряжения, аккумулирования электрической энергии в батареи конденсаторов при режиме нормального электропотребления, подачи электрической энергии с батареи конденсаторов и аккумуляторной батареи на вход преобразователя частоты и напряжения, взаимосвязанные операции вычисления реактивной мощности в блоке датчиков реактивного тока, вывод результатов работы датчика реактивной мощности на вход преобразователя частоты и форсировку силовой установки по реактивной мощности, где вместо обычных пусковых батарей установлены две группы аккумуляторных батарей большой мощности, соединенных между собой первым двухполюсным выключателем, состоящих из блоков последовательно и параллельно соединённых аккумуляторов, которые в нормальном режиме подключены между собой последовательно и работают через преобразователь частоты и напряжения и подключенный последовательно согласующий трансформатор на сеть для сглаживания графиков нагрузки, первая группа батарей соединена с первичным двигателем через второй двухполюсный выключатель и используется для пуска автономной газопоршневой и дизель-генераторной установки, в режиме максимальной выдачи мощности в сеть и одновременно пуске двигателя, группы батарей могут работать автономно при разомкнутом первом двухполюсном выключателе и замкнутом однополюсном выключателе. 1 ил.

Использование: в области электроэнергетики. Технический результат – обеспечение возможности плавить гололед на большие расстояния при помощи накопителей энергии большой мощности, находящихся в составе газопоршневых установок в автономных системах электроснабжения на воздушных линиях напряжением 0,4 кВ, 6-10 кВ, т.е. без покупки дополнительного оборудования. Установка содержит трехфазный мостовой преобразователь на полностью управляемых полупроводниковых вентилях, шунтированных встречно включенными диодами, первый трехполюсный выключатель и последовательно соединенный трехфазный дроссель, параллельно первому трехполюсному выключателю подключен генератор переменного тока с последовательно включенным вторым трехполюсным выключателем для питания нагрузки, n блоков аккумуляторных батарей и/или суперконденсаторов большой мощности (далее - блоки) имеют возможность параллельного и последовательного соединения в группу накопителей, первый двухполюсный выключатель контактами соединяет группу накопителей с эмиттерными и коллекторными выводами вентилей преобразователя, параллельное соединение блоков в группу накопителей осуществляется с использованием n двухполюсных выключателей, последовательное соединение блоков в группу накопителей осуществляется с использованием n однополюсных выключателей, один выход группы накопителей соединен посредством первого контакта третьего трехполюсного выключателя с проводом воздушной линии, второй выход группы накопителей соединен посредством второго контакта трехполюсного выключателя с первым выводом преобразователя, третий контакт трехполюсного выключателя замыкает землю со вторым выводом преобразователя. В первом случае блоки, используемые для сглаживания графиков нагрузки, замкнуты первым выключателем, разомкнутым во втором случае, и замкнуты оставшимися n двухполюсными выключателями, образующими группу накопителей, состоящих из параллельно соединенных блоков, разомкнутыми во втором случае. Во втором случае, который предназначен для плавки гололеда, группа накопителей замкнута третьим трехполюсным выключателем, разомкнутым в первом случае, и замкнута n однополюсными выключателями, образующими последовательно соединение блоков, разомкнутыми в первом случае, один выход группы накопителей соединен «плюсом» с проводом воздушной линии, а второй выход группы накопителей «минусом» с первым выводом преобразователя, где второй вывод преобразователя соединен с землей, при этом плавка гололеда постоянным током осуществляется по схеме «провод - земля». 1 ил.

Использование: в области электротехники для плавки гололеда на воздушных линиях электропередачи. Технический результат - возможность плавить гололед при помощи накопителей энергии большой мощности находящихся в составе газопоршневых установок, без покупки дополнительного оборудования. Установка содержит трехфазный мостовой преобразователь на полностью управляемых полупроводниковых вентилях, шунтированных встречно включенными диодами, трехполюсный выключатель и последовательно соединенный трехфазный дроссель, блоки аккумуляторных батарей или суперконденсаторов большой мощности (далее - блоки), в первом случае, используемые для сглаживания графиков нагрузки, во втором - для плавки гололеда, в первом случае замкнуты двухполюсными выключателями, образуя одну группу из параллельно соединенных блоков, во втором - разомкнуты, в первом случае соединены контактами однополюсного выключателя с эмиттерными и коллекторными выводами вентилей преобразователя, во втором - разомкнуты, в первом случае однополюсные выключатели, позволяющие соединить последовательно блоки в одну группу, разомкнуты, во втором - замкнуты для увеличения напряжения подаваемого на провод, один выход группы через двухполюсный выключатель «плюсом» соединен с проводом воздушной линии, а второй выход группы - «минусом» соединен с землей, при этом плавка гололеда постоянным током осуществляется по схеме «провод - земля». 1 ил.

Изобретение относится к области электротехники, а именно к системе форсировки возбуждения автономного синхронного генератора, входящего в электротехнический комплекс, с использованием накопителей энергии на основе аккумуляторных батарей и суперконденсаторов большой емкости, и может быть использована в автономных источниках электрической энергии, передвижных электроагрегатах и электростанциях. Ограничение глубины провалов напряжения (ПН) на выводах генератора при коротких замыканиях (КЗ) в электрической сети или при пусках электродвигателей, является техническим результатом изобретения. Технический результат обеспечивается за счет того, что система форсировки возбуждения автономного синхронного генератора включает суммирующий трансформатор и корректор напряжения, вход которого подключен к обмотке якоря генератора, а выход - к обмотке управления суммирующего трансформатора, вторичная обмотка которого через первый выпрямитель подключена к обмотке индуктора генератора, при этом параллельно обмотке индуктора подключен накопитель, состоящий из двух параллельно соединенных блоков, первый из которых состоит из n-аккумуляторных батарей, последовательно соединенных с m-аккумуляторными батареями, второй блок состоит из n-суперконденсаторов, при этом часть n-аккумуляторных батарей первого блока через электронный ключ на входе и электронный ключ на выходе подключена к системе управления, входы которой соединены с трансформатором тока и с трансформатором напряжения, вход которого подключен к выводам синхронного генератора, при этом часть n-аккумуляторных батарей соединена параллельно обмотке индуктора на напряжение, соответствующее напряжению форсировки возбуждения синхронного генератора, также оба блока подключены через управляемый инвертор и фильтр высших гармоник к выводам синхронного генератора.1 ил.

Изобретение относится к технике релейной защиты и автоматизированных систем управления в энергетике и предназначено для реализации функций противоаварийной автоматики в электроустановке, а также для автоматизации процесса сбора информации о состоянии вводов, присоединений и выключателей объекта контроля и управления. Технический результат заключается в повышении надежности приема-передачи информации в многопроцессорной информационно-управляющей системе релейной защиты и автоматики на основе пассивной оптической сети благодаря организации взаиморезервируемых каналов связи между устройствами в системе и обеспечении межтерминального информационного обмена в электроустановке для осуществления, например, функций противоаварийной автоматики, за счет передачи и приема информационных сообщений между синхронизируемыми устройствами в многопроцессорной информационно-управляющей системе релейной защиты и автоматики на основе пассивной оптической сети. 1 ил.

Изобретение относится к электротехнике, а именно к технике релейной защиты, автоматики и сигнализации. Техническим результатом является упрощение развертывания, масштабируемости, а также повышение скорости передачи информации в распределительных устройствах (РУ) электроэнергетических установок (ЭУ), в ЭУ, а также в электроэнергетической системе (ЭС) в целом. Технический результат достигается тем, что централизованная микропроцессорная система релейной защиты, автоматики и сигнализации с дистанционным управлением содержит множество устройств присоединений в N РУ, N централизованных микропроцессорных систем управления (СУ) выходными реле N РУ, Q централизованных микропроцессорных СУ выходными реле Q ЭУ, СУ ЭС, при этом каждая из множества N СУ выходными режимами реле и сигнализации соответствующего РУ из множества N РУ соединена с соответствующим множеством устройств присоединения соответствующего РУ из множества N РУ, каждая Q централизованная СУ из множества Q ЭУ соединена с соответствующими N СУ N РУ Q ЭУ и соединена с Q-1 СУ ЭУ, а также с СУ выходными реле соответствии с алгоритмами защиты и противоаварийной автоматики ЭС, причем каждое из множества устройств присоединений N РУ Q ЭУ ЭС содержит блоки гальванической развязки и предварительного масштабирования, блок частотных фильтров, аналого-цифровой преобразователь, микроконтроллер связи и приемопередатчик каналов связи кольцевой топологии, при этом блок СУ каждой N СУ N РУ соединен с ЭВМ. 2 ил.

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. В теплообменной трубе со скругленными выемками на наружной поверхности и соответствующими им скругленными выступами высотой h на внутренней поверхности, которые нанесены с шагом S, скругленные выемки на наружной поверхности и соответствующие им скругленные выступы на внутренней поверхности имеют угловой размер, равный 90°, и расположены на противоположных сторонах трубы, при этом повернутые на 90° скругленные выступы и выемки нанесены с шагом S/2, причем труба выполнена с геометрическими соотношениями: S=1∗D, h=0,1∗D, где S - шаг между скругленными выемками, мм; h - высота скругленного выступа, мм; D - наружный диаметр теплообменной трубы, мм. Техническим результат - снижение энергетических затрат на прокачку теплоносителя за счет снижения гидросопротивления, а также увеличение прочности и надежности трубы. 2 ил.

Изобретение относится к испытательной технике и может быть использовано для испытаний на циклическую прочность приводных ремней. Устройство включает электрический двигатель, выполняющий функцию привода, электрический двигатель, выполняющий функцию нагрузочной машины, испытуемый ремень, приводной шкив, нагрузочный шкив, натяжной шкив, натяжной механизм, ролик автоматического натяжения ремня, обеспечивающий его постоянное натяжение, подшипниковый узел, датчик крутящего момента нагрузочной машины, соединительные муфты, тензодатчик, раму, измерительный шкаф, силовой шкаф, в котором находятся преобразователи частоты и рекуператор электрической энергии. Технический результат заключается в повышении точности измерений, ускорении процесса испытаний, экономии электроэнергии при длительных испытаниях. 2 з.п. ф-лы, 3 ил.

 


Наверх