Патенты автора Житомирский Борис Леонидович (RU)

Изобретение относится к энергосберегающим технологиям магистрального транспорта газа. Сущность изобретения: для магистрального транспорта газа в блоке расчета параметров регулирования формируют модель базового участка магистрального газопровода, состоящего из головной компрессорной станции, линейной компрессорной станции и линейного участка магистрального газопровода. По заданному алгоритму определяют эквивалентную длину линейного участка, рассчитывают внутреннюю энергию потока газа, сжатого в полости линейного участка магистрального газопровода. Для головной компрессорной станции формируют энергетический баланс, состоящий из суммарных затрат энергии, обеспечивающих транспортировку газа с заданными проектом параметрами, включающих мощность сжатия газа в компрессорах газоперекачивающих агрегатов, мощность охлаждения газа и масла для поддержания в заданных пределах температуры газа на входе в линейный участок магистрального газопровода и температуры масла в системе смазки газоперекачивающих агрегатов. Затраты энергии, рассчитанные для головной компрессорной станции, сравнивают с внутренней энергией потока газа, сжатого в полости линейного участка магистрального газопровода. Для базового участка магистрального газопровода по заданному алгоритму определяют параметрические показатели энерготехнологической эффективности магистрального транспорта газа, включающие удельное сопротивление потерям энергии газа на линейном участке магистрального газопровода. Величины показателей энерготехнологической эффективности базового участка магистрального газопровода используют в качестве параметрических критериев обеспечения энерготехнологической эффективности магистрального транспорта газа для действующих и/или проектируемых магистральных газопроводов. Показатель энерготехнологической эффективности линейного участка магистрального газопровода и показатели энерготехнологической эффективности компрессорной станции, сформированные в системе автоматического управления компрессорной станции для модели базового участка магистрального газопровода, принимают в качестве параметрических критериев интегральной оценки энерготехнологической эффективности магистрального транспорта газа и автоматического управления режимами работы магистрального газопровода. Технический результат: повышение энерготехнологической эффективности магистрального транспорта газа. 1 з.п. ф-лы, 2 ил., 3 табл.

Предложенный комплекс внутритрубной дефектоскопии с тросовой протяжкой относится к средствам для проверки технического состояния коротких прямолинейных или изгибных отрезков трубопровода. Данный комплекс содержит внутритрубный магнитный дефектоскоп, первую и вторую лебедку, вытяжной трос, силовой трос, кроулер, компьютер, подвижный маркирующий модуль с краскопультом, радиопередающее устройство, радиоприемное устройство, направляющий трос, первый и второй держатель направляющего троса, промежуточный держатель направляющего троса, идентификатор кольцевого шва. Первый держатель направляющего троса установлен на поверхности грунта над трубой около рва над входом в контролируемую трубу, второй держатель направляющего троса установлен на поверхности грунта над трубой около рва над выходом из контролируемой трубы, а направляющий трос укреплен одним концом к первому держателю направляющего троса, вторым концом - ко второму держателю направляющего троса, а на повороте трубы в горизонтальной плоскости направляющий трос крепится к промежуточному держателю направляющего троса с помощью эластичных растяжек. Направляющий трос введен в канавки первого и второго направляющих шкивов подвижного маркирующего модуля, магнитный датчик установлен в геометрическом центре тележки подвижного маркирующего модуля, радиопередающее устройство и его антенна установлены в кормовой части внутритрубного снаряда-дефектоскопа, а к входам модулятора радиопередатчика подключен выход идентификатора кольцевого шва, на множественные входы которого подключены выходы магнитных датчиков снаряда дефектоскопа. Данное изобретение обеспечивает повышение точности наземной привязки обнаруженных в трубопроводе дефектов относительно положения известных точек трубки. 5 ил.

Изобретение может быть использовано при строительстве и капитальном ремонте магистральных газопроводов после испытаний для их осушки. Способ отличается тем, что с целью повышения эффективности осушки в условиях отрицательных температур осушаемой среды полость газопровода вакуумируют и в процессе вакуумирования через заданные равные интервалы времени измеряют параметры, характеризующие термодинамическое состояние среды в полости газопровода. Измеренные параметры сравнивают с заданными допусками и при достижении в полости газопровода минимального абсолютного давления заданной величины отключают вакуумные насосы. Вакуумирование останавливают и газопровод выдерживают под минимальным абсолютным давлением в течение времени до достижения 100% насыщения паровоздушной смеси над поверхностью льда в полости газопровода. После достижения заданной величины температуры точки росы включают вакуумные насосы и из полости газопровода откачивают пары воды. Откачку паров воды и осушку полости газопровода завершают после достижения заданной величины температуры точки росы во всем объеме газопровода. В процессе вакуумирования при температуре среды в полости газопровода, равной температуре начала кристаллизации воды, полость газопровода продувают азотом. Продувку полости газопровода азотом ведут на открытый конец газопровода при атмосферном давлении. Продувку азотом и осушку полости газопровода завершают после достижения заданной величины температуры точки росы во всем объеме газопровода. 1 з.п. ф-лы, 4 ил., 1 табл.

Использование: для контроля технического состояния стенок труб. Сущность изобретения заключается в том, что внутритрубный профилометр, состоящий из герметичного корпуса с глухой эластичной манжетой в головной части и опорной манжеты в кормовой части, снабженной клапанами для перепуска газа и с пазами для перетекания загрязнений, скапливающихся перед ней, с двумя, расположенными по окружности корпуса, рядами рычажных сенсоров, с угловым смещением сенсоров второго ряда по окружности корпуса на угол, равный половине углового расстояния между сенсорами первого ряда. На конце каждого сенсорного рычага, обращенного к стенке трубы, шарнирно закреплена платформа, с колесными опорами. На внешней поверхности каждой платформы укреплен контейнер с пьезоэлектрическими преобразователями и электронными элементами, формирующими эхолокаторы и обеспечивающими возможность измерять расстояние от излучающей поверхности эхолокатора до стенки трубы, и сохранять результаты измерений в оперативном запоминающем устройстве бортового компьютера, а также передавать собранные данные в бортовой накопитель данных. Эхолокаторы размещены в контейнерах, протяженных в направлении поперек продольной оси трубы. Множество эхолокаторов с малым размером излучающей поверхности позволяют обнаруживать раздельно две близко расположенные деформации стенки трубы, то есть обеспечивают высокую разрешающую способность профилометру. Технический результат: улучшение метрологических характеристик и упрощение механической части конструкции профилометра. 9 ил.

 


Наверх