Патенты автора Коптелов Константин Анатольевич (RU)

Изобретение относится к устройствам получения ледяной воды в пластинчатых испарителях холодильных установок и может быть использовано в различных отраслях промышленности, где необходимо использовать ледяную воду с температурой от 0,1÷0,5°С. Контроль давления воды на входе в пластинчатый испаритель обеспечивает защиту от обмерзания пластинчатого испарителя путем кратковременного байпаса горячего газа на вход испарителя, с одновременным регулированием холодопроизводительности компрессора в зависимости от температуры ледяной воды на выходе из проточного испарителя. Теплоизолированный смесительный бак связан перепускным трубопроводом с баком ледяной воды холодильной установки. Техническим результатом является надежное и безопасное получение воды с температурой, предельно близкой к 0°С. 1 ил.

Изобретение относится к парокомпрессионным холодильным установкам и может быть использовано для регулирования температуры жидкого хладоносителя в различных технологических процессах. Заявлен способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки, который включает измерение температуры хладоносителя на выходе из испарителя и регулирование объемной производительности, при этом фиксируют номинальное значение температуры хладоносителя на выходе из испарителя и диапазон ее регулирования. Для фиксированного значения номинальной температуры и диапазона ее регулирования расчетным путем определяют и фиксируют номинальное значение давления кипения хладагента в испарителе и диапазон его регулирования. Контролируют текущие значения температуры хладоносителя на выходе из испарителя, давления кипения хладагента и объемной производительности компрессора. Сравнивают полученные значения упомянутых температуры хладоносителя и давления кипения хладагента с их фиксированными соответствующими номинальными значениями, при этом номинальное значение температуры хладоносителя на выходе из испарителя поддерживают изменением объемной производительности компрессора в диапазоне номинальных значений давлений хладагента в испарителе, соответствующих номинальному диапазону регулирования температуры хладоносителя на выходе из испарителя с учетом расчетной зависимости Ркип.н=ƒ(tвых.ном.), где tвых.ном. - номинальные значения температуры хладоносителя на выходе из испарителя; Ркип.ном. - номинальные значения давления кипения хладагента в испарителе; ƒ - функция, зависящая от типа хладагента, хладоносителя и конструкции испарителя, получаемая в результате расчетов испарителя при различных величинах тепловой нагрузки на него. Технический результат - повышение точности регулирования температуры хладоносителя на выходе из испарителя свыше ±0,5°С. 2 ил.

Группа изобретений относится к оборудованию для наземных испытаний объектов ракетно-космической техники. Способ воздушного термостатирования отсеков космического аппарата (КА) включает нагнетание воздуха из окружающей среды, его охлаждение, осушку, нагревание и подачу в термостатируемый отсек КА. В процессе нагнетания измеряют температуры воздуха на входе в нагнетатель и на его выходе при различных заданных расходах воздуха, определяют величины нагрева воздуха в нагнетателе. После охлаждения и осушки нагревают воздух внутри теплозвукоизолированной зоны до требуемой температуры. Устройство для воздушного термостатирования отсеков КА включает корпус, воздухонепроницаемую перегородку, разделяющую корпус на две зоны - холодильную и теплозвукоизолированную. В теплозвукоизолированной зоне верхней части корпуса размещены охладитель-осушитель воздуха с линией отвода конденсата, нагреватель воздуха, нагнетатель воздуха с регулируемым числом оборотов, на входе и на выходе которого установлены датчики температуры воздуха. В холодильной зоне размещены конденсатор воздушного охлаждения, холодильный компрессор и расширительное устройство. Техническим результатом группы изобретений является повышение энергоэффективности термостатирования. 2 н.п. ф-лы, 1 ил.

Изобретение относится к способам получения ледяной шуги с использованием холодильных установок и может быть реализовано в рыбодобывающей, молочной и птицеперерабатывающей отраслях промышленности. По сравнению с аналогами способ позволяет получать непрерывный поток ледяной шуги с равномерными ледяными гранулами, при этом его отличает минимальный уровень шума и высокая энергоэффективность. Способ включает предварительное охлаждение потока воды до температуры, близкой к температуре замерзания, последующее охлаждение потока воды до температуры ниже 0°C в каналах теплообменника из немагнитного материала с воздействием при этом на поток охлаждаемой воды магнитным полем вдоль всей длины канала. Скорость потока воды в охлаждаемых каналах из немагнитного материала выбирают из соотношения: где: w - скорость движения воды в охлаждаемом канале, м/с, l - размер канала, м, µ - коэффициент динамической вязкости воды, Па·с, ρ - плотность воды, кг/м3, Re - критерий Рейнольдса, равный 2300. 1 з.п. ф-лы, 1 ил.

Способ удаления инея в воздушном испарителе заключается в периодическом воздействии на иней направленным электромагнитным излучением в инфракрасном диапазоне частот, энергии которого достаточно для расплавления инея. Границы сечения направленного инфракрасного потока не выходят за периметр облучаемой площади испарителя, а направление воздействия инфракрасного излучения перпендикулярно продольной оси оребренных трубок испарителя по направлению движения воздуха. Данный способ позволяет снизить потребную мощность в процессе удаления инея примерно на 30-40%. 2 ил.

 


Наверх