Патенты автора Бобренок Олег Филиппович (RU)

Группа изобретений относится к способу приготовления дисперсии одностенных и/или двустенных углеродных нанотрубок и их агломератов, способу приготовления катодной пасты, катодной пасте, способу изготовления катода и катоду. Дисперсия содержит растворитель, большинство молекул которого электронейтральны, гидрированный бутадиен-нитрильный каучук и одностенные и/или двустенные углеродные нанотрубки в количестве от 0,2 до 2 масс. % и массовым отношением одностенных и/или двустенных углеродных нанотрубок к гидрированному бутадиен-нитрильному каучуку не меньше 0,1 и не больше 10. Техническим результатом является высокая стабильность при хранении и транспортировке и одновременно низкая вязкость в условиях различных технологических процессов. 6 н. и 36 з.п. ф-лы, 10 ил., 1 табл.

Изобретение относится к водным дисперсиям одностенных и/или двустенных углеродных нанотрубок и их агломератов, к способам их приготовления, к использованию таких дисперсий для приготовления электродных паст, к электродным пастам, к электродам литий-ионных батарей и к способам изготовления электродов литий-ионных батарей. Дисперсия содержит воду, гелеобразователь и 0,3 до 2 масс. % одностенных и/или двустенных углеродных нанотрубок при массовом отношении одностенных и/или двустенных углеродных нанотрубок к гелеобразователю не менее 0,05 и не более 10, при этом в дисперсии присутствуют частицы геля, образованные агломератами молекул гелеобразователя, физически связанные в сеть слабого геля одностенными и/или двустенными углеродными нанотрубками. Техническим результатом является высокая стабильность при хранении и транспортировке и одновременно низкая вязкость в условиях различных технологических процессов использования водной дисперсии, приготовления электродных паст и затем электродов литий-ионной батареи. 10 н. и 32 з.п. ф-лы, 9 ил., 2 табл., 8 пр.

Изобретение относится к способу приготовления анодной пасты для литий-ионной батареи, сухое вещество которой содержит более 50 мас.% и менее 99,9 мас.% активного компонента, представляющего собой фазу кремния или фазы оксидов кремния, SiOx, где x – положительное число, меньшее или равное 2, или совокупность фаз кремния и оксида кремния SiOx с общим атомным соотношением содержания элементов кислород:кремний в составе анодного материала больше 0 и меньше 1,8, и содержит более 0,1 мас.% и менее 20 мас.% углеродных нанотрубок, отличающийся тем, что он включает последовательность стадий (1) внесения композиции (К), содержащей фазу кремния или фазы оксида кремния, SiOx, где x – положительное число, меньшее или равное 2, или совокупность этих фаз с общим атомным соотношением содержания элементов кислород:кремний в составе указанной совокупности фаз больше 0 и меньше 1,8, в суспензию в жидкой фазе (С), содержащей от 0,01 мас.% до 5 мас.% углеродных нанотрубок, причём более 5 мас.% углеродных нанотрубок от общего содержания углеродных нанотрубок в суспензии (С) являются одностенными и/или двухстенными и объединены в пучки длиной более 10 мкм и мода распределения числа пучков углеродных нанотрубок в суспензии (С) по гидродинамическому диаметру составляет менее 500 нм, и (2) перемешивания смеси композиции (K) в суспензии (С) до однородной пасты. Также изобретение относится к анодной пасте, способу приготовления анода литий-ионной батареи (вариантам), аноду, литий-ионной батареи. Техническим результатом предлагаемого изобретения является начальная удельная ёмкость анода более 500 мА⋅ч/г и сохранение анодом и литий-ионной батареей более 80% начальной ёмкости в течение не менее чем 500 циклов заряда-разряда при токах заряда и разряда не менее 1 C. 6 н. и 19 з.п. ф-лы, 1 табл., 9 пр., 15 ил.

Изобретение относится к химической промышленности и нанотехнологии и может быть использовано при изготовлении композиционных полимерных материалов. По одному варианту углеродный материал (I), содержащий одностенные углеродные нанотрубки и не менее 50% углерода, приводят во взаимодействие с раствором хлорида железа с концентрацией не менее 0,1 М. По другому варианту углеродный материал (I), содержащий одностенные углеродные нанотрубки и 0,5-50 масс. % примесей оксида железа, приводят во взаимодействие с раствором соляной кислоты, имеющей концентрацию не менее 0,1 М, при температуре не ниже 40°С. По обоим вариантам затем полученный влажный углеродный материал отделяют и термообрабатывают. Углеродный материал (I) получают окислением углеродного материала (II), содержащего одностенные углеродные нанотрубки и 0,3-40 масс. % примесей фаз наноразмерного карбида железа и металлического железа, в токе газа, содержащего молекулярный кислород и пары воды, при температуре не ниже 300°С. Соотношение интегральных интенсивностей G-моды и D-моды спектра комбинационного рассеяния света с длиной волны 532 нм на углеродных материалах (I) и (II), соответственно, не менее 2 и не менее 50. Полученный углеродный материал, модифицированный хлором, содержащий одностенные углеродные нанотрубки, большая часть которых входит в состав перколяционной сети, содержит не менее 90 масс. % углерода и не менее 3 масс. % хлора. Указанный углеродный материал вводят в полимерный материал, в реакционную смесь, участвующую в реакции полимеризации или поликонденсации с образованием полимерного материала, или в один из компонентов этой реакционной смеси. Реакцию полимеризации проводят под воздействием ультрафиолетового излучения и/или при температуре не ниже 60°С. Полученный композиционный полимерный материал имеет удельное электрическое сопротивление не выше 107 Ом⋅м и содержит не менее 0,001 масс. % вышеуказанного углеродного материала, модифицированного хлором, содержащего одностенные углеродные нанотрубки. 5 н. и 18 з.п. ф-лы, 7 ил., 1 табл., 23 пр.
Изобретение относится к электротехнике, в частности - к коаксиальным кабелям, которые могут использоваться для передачи сигнала в различных областях техники: системах связи, вещательных сетях, компьютерных сетях, антенно-фидерных системах, автоматизированных системах управления и других системах. Коаксиальный кабель включает, по меньшей мере, одну пару соосно расположенных проводников, внутреннего и внешнего, изолированных друг от друга, причем внешний проводник выполнен из бумаги с углеродными нанотрубками. Изобретение решает задачу создания коаксиального кабеля, имеющего низкий вес при прочном экранирующем слое, содержащем углеродные нанотрубки, который не требует сложной технологии его формирования. 6 з.п. ф-лы.

Изобретение относится к химической промышленности и может быть использовано при изготовлении нанокомпозитов. Углеродные нанотрубки обрабатывают электролитом в проточном электролизере, содержащем установленные в его внутреннем пространстве катод 10, анод 6 и пористую диафрагму 8, делящую внутреннее пространство на анодную и катодную части. Электролит включает водный раствор кислоты, выбранной из ряда: соляная, и/или азотная, и/или серная. В анодную часть помещают углеродные нанотрубки 7 при непосредственном контакте их с анодом. Устанавливают разность потенциалов 1,5-6 В между анодом 6 и катодом 10, достаточную для протекания электролиза. Электролит пропускают со скоростью 1-5 мл/мин на 1 г нанотрубок в течение 3-10 ч. Затем углеродные нанотрубки удаляют из электролизера, промывают водой и сушат. Изобретение позволяет функционализировать углеродные нанотрубки кислородсодержащими функциональными группами простым способом. 5 з.п. ф-лы, 2 ил., 3 пр.

Изобретение относится к области электротехники, а именно к токосъемникам из металлической фольги для литий-ионных батарей и суперконденсаторов. Предложена металлическая фольга, поверхность которой снабжена проводящим слоем, включающим углеродные нанотрубки, при этом проводящий слой нанесен таким образом, что углеродные нанотрубки располагаются на поверхности фольги хаотично и в количестве 100 нг/см2-10 мкг/см2, а также предложен способ изготовления металлической фольги с проводящим слоем из углеродных нанотрубок, согласно которому углеродные нанотрубки смешивают с диспергентом с получением суспензии, которую наносят на поверхность металлической фольги таким образом, чтобы количество углеродных нанотрубок на названной поверхности составляло 10-100 нг/см2. Снижение контактного сопротивления между активным электродным слоем и токосъемником является техническим результатом изобретения. 2 н. и 9 з.п. ф-лы, 1 ил., 2 пр.

 


Наверх