Патенты автора Чепелев Андрей Васильевич (RU)

Изобретение относится к области передачи и обработки цифровых сигналов. Техническим результатом является повышение достоверности передачи информации по радиоканалу. Способ содержит этапы, на которых вводят избыточность цифрового сообщения с помощью добавления эталонных маркеров, для этого до начала передачи цифрового информационного сигнала доводят до участников информационного взаимодействия значение эталонных маркеров, которое вводят и хранят в базе данных аппаратно-программных комплексов, входящих в состав информационной сети, и не меняют в установленном временном интервале, затем в процессе подготовки передаваемых сообщений в передающем аппаратно-программном комплексе формируют цифровое сообщение таким образом, что после каждого передаваемого информационного сигнала «1» вводят дополнительный эталонный маркер через известный заданный интервал времени, меньший, чем интервал между информационными сигналами, а после передаваемого информационного сигнала «0» через заданный интервал времени эталонный маркер не вводится, после получения цифрового сообщения в принимающем аппаратно-программном комплексе анализируют временные интервалы между сигналами, выделяют эталонные маркеры и формируют истинное значение переданного цифрового информационного сигнала из фактически принятого сообщения. 5 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано в приборостроении РЭА при разработке и изготовлении интеллектуальных датчиков для измерения различных физических величин в системах контроля и управления объектами в различных сферах деятельности, например в робототехнике. Технический результат: расширение функциональных возможностей. Сущность: в состав измерительной части введены дополнительные сенсоры для измерения разнородных физических величин, адаптер с унифицированными гнездами для их подключения и модуль преобразований измерительной информации в требуемую форму. В вычислительную часть введены дополнительные процедуры для оценивания измерительной информации и реализации дистанционного адаптивного изменения состава и содержания процедур обработки измеренных значений разнородных физических величин. До начала измерений вводят в базу данных перепрограммируемого вычислительного модуля перечень идентификаторов измеряемых физических величин и их допустимые значения. В базу правил вводят задание на проведение измерений, правила формирования безразмерных показателей соответствия полученных оценок установленным значениям границ интервалов, правила представления совокупности безразмерных показателей в виде матрицы, правила интерпретации сообщений матрицы-задания на изменение состава и содержания правил оценивания измеренных значений, правила дистанционного изменения состава и содержания базы данных и базы правил, правила формирования управляющих сигналов, правила самоконтроля и оценивания работоспособности мультисенсорного интеллектуального датчика. В процессе функционирования осуществляют опрос подключенных сенсоров, вычисляют значения безразмерных показателей соответствия (несоответствия) установленным нормам. Формируют результат измерений в виде информационного сообщения, содержащего матрицу безразмерных показателей соответствия и сигналы управления периферийными устройствами. Через модуль ввода-вывода осуществляют передачу сформированного сообщения на заданные периферийные устройства по соответствующим каналам связи. 1 ил.

Изобретение относится к области навигационного приборостроения и может найти применение в системах комплексного мониторинга состояния макрообъектов. Технический результат – расширение функциональных возможностей. Для этого в процессе мониторинга состояния макрообъектов, к отличительными признакам которых относятся разнородность их характеристик, большие пространственные и информационные размерности, глобальный комплексный мониторинг представляет собой совокупность организационно-технических мероприятий, включающую наблюдение за состоянием динамических систем различными средствами, оценку состояния по измеренным значениям параметров состояния и прогнозирование изменений состояния под воздействием природных и антропогенных факторов. При этом разнородность элементов объектов искусственного и естественного происхождения, формирующих структуру и состав, а также совокупность свойств и характеристик окружающей среды, в полной мере дает основание считать ее динамической системой высшего уровня иерархии. При этом расширение функциональных возможностей заключается в обеспечении возможностей адаптивного дистанционного управления состоянием макрообъекта с изменяемым составом, структурой его составных частей, а также силами и средствами, осуществляющими комплексный мониторинг объектов различной пространственной и информационной размерности в масштабе времени, близком к реальному; в повышении защищенности от несанкционированного вскрытия передаваемых данных о состоянии макрообъекта и достигается за счет введения в известный способ новых действий и нового порядка их осуществления. Вводят в схему осуществления способа центр координации, где формируют образ всего макрообъекта, и используют несколько центров обработки и управления при осуществлении способа. Используют унифицированное для всех центров обработки и управления, средств осуществления мониторинга формализованное представление состояния части макрообъекта в виде детализируемого в соответствии с рангом центра обработки и управления образа, разделенного на сектора по количеству контролируемых объектов или их групп. Разделяют каналы управления и передачи данных о состоянии объектов, вводят в схему осуществления способа регуляторы значений параметров. Используют единые правила формирования матриц управления в центрах, имеющих различные ранги, и вводят индикаторные показатели несоответствия фактических значений контролируемых параметров, а также используют в качестве исходных данных для второго эшелона закрытия передаваемых сообщений безразмерные значения показателей соответствия и несоответствия фактических значений установленным нормам контролируемых параметров. 21 з.п. ф-лы, 4 ил.

Изобретение относится к способам нанесения разметки дорожных и иных покрытий с использованием красок (эмалей), термопластика, холодного пластика и предназначено для повышения износостойкости и долговечности дорожной разметки и разметки различных поверхностей. Способ нанесения разметки дорожных и иных покрытий с использованием красок (эмалей), термопластика, холодного пластика заключается в том, что на поверхность покрытия наносят краски или полимерный материал разметки и обеспечивают его затвердевание, отличающийся тем, что перед нанесением краски или полимерного материала для более широкого и глубокого проникновения материала разметки в пористый слой поверхности покрытия перфорируют его поверхность. После проникновения материала разметки и его затвердевания получают износостойкую, близкую по составу к монолитной, основу разметки. При этом до начала перфорации асфальтобетонных покрытий нагревают поверхность покрытия, а при нанесении разметки на вертикальные или наклонные поверхности перфорацию производят под углом. 2 ил.

Изобретение относится к способам ведения комплексного мониторинга состояния динамических объектов и систем. Технический результат заключается в расширении функциональных возможностей средств и систем мониторинга, а именно в придании им новых свойств, которые обеспечивают дистанционную, целенаправленную адаптацию их программно-аппаратной конфигурации для решения в требуемый момент времени новой совокупности задач интеллектуальной обработки разнородных данных о параметрах контролируемых динамических систем в процессе их функционирования; в повышении защищенности данных, содержащихся в передаваемых от средств в центр обработки и управления (ЦОУ) сообщениях о результатах мониторинга состояния контролируемых объектов. До начала измерений формируют в аппаратно-программном комплексе (АПК) ЦОУ блокматрицу-задание каждому средству мониторинга на контроль состояния динамической системы или объекта. При этом в состав блокматрицы-задания включают: подматрицу-задание на измерение значений требуемой совокупности параметров состояния контролируемого объекта; подматрицу-задание на изменение содержимого базы знаний и порядка использования новых процедур интеллектуальной обработки измеренных значений параметров объекта; подматрицу-задание на изменение пространственно-временных характеристик состояния средства в процессе осуществления мониторинга. До начала дополнительных измерений в базы данных и правил баз знаний средств осуществления мониторинга по каналам связи вводят блокматрицу-задание, содержащую следующие данные: пронумерованные новые процедуры интеллектуальной обработки измеренных значений параметров состояния, правила интерпретации и отображения заданий, правила разделения матрицы-задания на подматрицы-задания и формирования сообщений о результатах мониторинга; правила использования процедур интеллектуальной обработки измеренных значений; правила преобразования измеренных значений в заданную форму; правила изменения состава процедур интеллектуальной обработки измеренных значений; идентификаторы вида действий и значения их уровней приоритета при изменении содержимого базы правил; вводят в систему измерений средств мониторинга модуль диспетчера, с помощью которого управляют частотой опроса параметров, выбором, функционированием выбранной совокупности измерительных модулей, а также функционированием модуля преобразования измеренных значений параметров состояния динамической системы. При необходимости оценивания состояния в случаях оперативного изменения задания, типов, структуры динамической системы от АПК органа управления по линиям связи передают, а в средстве осуществления мониторинга получают и преобразовывают в аппаратуре приема-передачи данных сообщение, содержащее блокматрицу-задание. Преобразованное сообщение передают в модуль ввода-вывода, где выделяют из сообщения подматрицы-задания и копируют их, после этого копию подматрицы-задания на измерение передают в диспетчер системы измерения, а копию блокматрицы-задания передают в базы правил и данных базы знаний. В диспетчере формируют состав и затем управляют функционированием сформированной совокупности измерительных модулей, которые осуществляют измерения в соответствии с заданной частотой, затем результаты измерений значений параметров состояния передают в модуль преобразования, где получают значения и формируют файлы преобразованных значений в заданной форме, затем из файлов формируют матрицу преобразованных значений, которую передают в базу данных. Затем в соответствии с правилами управления из базы данных файлы передают в модуль интеллектуальной обработки и оценивания, где по совокупности процедур, в соответствии с заданием вычисляют значения оценок параметров и/или интегральных характеристик динамической системы, затем их сравнивают с допустимыми, вычисляют значения и формируют матрицу безразмерных показателей соответствия (несоответствия) и фиктивных показателей несоответствия оцененных и заданных значений контролируемых параметров состояния динамической системы, затем передают матрицу показателей в модуль ввода-вывода, в котором ее включают в содержание сообщения о фактическом состоянии динамической системы, которое через аппаратуру приема-передачи данных передают в виде комплексного сигнала в ЦОУ, где преобразовывают и представляют в требуемой форме. 2 з.п. ф-лы, 2 ил., 10 табл.

 


Наверх