Патенты автора Винокуров Николай Владимирович (RU)

Изобретение относится к способу сварки трением с перемешиванием стыковых соединений из алюминиевых деформируемых сплавов. Используют сварочный инструмент с пином, выполненным длиной 5,8…11,8 мм цилиндрической формы с левосторонней резьбой и опорным буртом диаметром 18…28 мм. Перед сваркой производят закрепление листовых деталей толщиной 6…12 мм в тисках и фрезерование свариваемых кромок по плоскости. Погружают вращающийся инструмент в стык соединяемых деталей до достижения заданной глубины, равной 95-98% толщины свариваемых деталей. Погружение инструмента в стык соединяемых деталей осуществляют с минимальной скоростью вертикального перемещения 10…16 мм/мин и высокой скоростью вращения 300…500 об/мин, при этом угол инструмента изменяют относительно вертикальной оси с 0° до -1,0°…-2,0°. Глубину погружения инструмента регулируют в соответствии со значениями осевого усилия, получаемыми с датчиков обратной связи станка. Затем, сохраняя угол и скорость вращения, инструмент перемещают вдоль линии стыка со скоростью 300…400 мм/мин при постоянном осевом усилии 23…34 кН. По окончании сварки поднимают вращающийся инструмент и выводят из стыка. Заявляемый способ позволяет повысить твердость сварного шва. 9 ил., 1 табл., 1 пр.

Изобретение может быть использовано для выполнения стыковых соединений деталей из алюминиевых жаропрочных сплавов толщиной 2…6 мм. Используют сварочный инструмент с пином, выполненным в форме усеченного конуса длиной 1,8…5,7 мм с тремя «левыми» резьбовыми канавками, и опорным буртом диаметром 8…18 мм со спиральной канавкой. Погружение инструмента в стык соединяемых деталей осуществляют с минимальной скоростью вертикального перемещения 7…12 мм/мин и высокой скоростью вращения 350…500 об/мин до достижения заданной глубины, равной 90…95% толщины свариваемых деталей. Угол инструмента при этом изменяют относительно вертикальной оси с 0 до -1,5…-2,5°. Затем, сохраняя угол и скорость вращения, инструмент перемещают вдоль линии стыка со скоростью 220…300 мм/мин при постоянном осевом усилии, равном 12…15 кН, управляемом датчиками обратной связи. Способ позволяет предотвратить износ инструмента, устранить внутренние дефекты и обеспечить прочность сварного соединения до 90% от предела прочности основного материала. 2 ил.

Изобретение относится к области авиастроения и предназначено для определения остаточных напряжений в поверхностных слоях деталей с радиусными переходами большой кривизны, например в зоне скругленной кромки лопатки турбины и компрессора. Сущность изобретения: осуществляют вырезку плоской заготовки, изготовление криволинейного образца прямоугольного сечения, последовательное снятие поверхностных слоев материала с остаточными напряжениями, чередующееся с определением геометрических параметров образца, выполнение расчетов с использованием формул и полученных в эксперименте геометрических параметров. Для определения остаточных напряжений используют образец V-образной формы с радиусом скругления криволинейной части R=1…3 и более мм, с дугой ABC с центральным углом φ≈126°±5°, с двумя концами-удлинителями, разведенными на угол α и образующими расчетный угол β≈126°±5°. Слои материала с остаточными тангенциальными напряжениями снимают на участке выпуклой поверхности криволинейной части с дугой ABC, после каждого снятого слоя измеряют толщину t криволинейной части, высоту Н образца, ширину А в основании образца, угол α развода удлинителей. При выполнении расчетов вначале определяют дополнительные параметры криволинейной части образца: расчетный угол β развода удлинителей, хорду а, стрелу h и радиус R дуги ABC, радиус r нейтральной линии изгиба и радиус ρ оси, смещение е между r и ρ, расстояние у от дуги радиусом r до выпуклой поверхности, используя формулы. После чего рассчитывают остаточные тангенциальные напряжения σi в поверхностных слоях материала, начиная с первого слоя, по формуле. Технический результат: возможность определения тангенциальных остаточных напряжений в зоне кромки пера лопатки с радиусом скругления 1…3 мм и более. 2 ил.

Изобретение относится к области машиностроения и предназначено для определения остаточных технологических напряжений в поверхностных слоях детали, полученных при механической обработке. Сущность: осуществляют вырезку образца в форме стержня прямоугольного сечения. С образца снимают тонкие слои материала, начиная со слоя минимальной толщины 8-12 мкм и увеличивая толщины последующих слоев до значения не более 35 мкм последнего слоя. Определяют толщину каждого снятого тонкого слоя и приращение прогиба образца, вызванное каждым снятым тонким слоем, затем рассчитывают остаточные напряжения в тонких слоях материала по формуле. Технический результат: упрощение способа, снижение трудоемкости и повышение точности определения остаточных напряжений в поверхностных слоях детали. 1 таб., 4 ил.

 


Наверх