Патенты автора ДОНДЕРИСИ Буркай (US)

Изобретение относится к бурению скважин и может быть использовано для определения расстояния между скважинами. Техническим результатом является повышение точности и надежности позиционирования скважины относительно другой скважины. В частности, предложен способ внутрискважинной дальнометрии, включающий: размещение первого магнитного диполя в стволе первой скважины; размещение трехосного магнитного диполя в стволе второй скважины; получение значения первого измерения магнитного поля, распространяющегося между стволами первой и второй скважин, причем магнитное поле имеет естественную форму; вычисление направления указанного первого измерения магнитного поля на основании естественной формы магнитного поля; и наведение компоновки низа бурильной колонны, исходя из траектории подхода. Причем естественная форма магнитного поля определяет траекторию подхода, по которой наводится компоновка низа бурильной колонны, и вычисление расстояния между стволами первой и второй скважин на основании амплитуды первого измерения магнитного поля. 2 н. и 22 з.п. ф-лы, 12 ил.

Изобретение относится к бурению направленных скважин и может быть применено для бурения пересекающихся скважин. Техническим результатом является повышение точности определения расположения скважины относительно цели. В частности, предложен способ измерения дальности забоя скважины, содержащий: бурение первого ствола скважины, который содержит вытянутый проводящий элемент; развертывание по меньшей мере двух магнитных дипольных передатчиков и по меньшей мере четырех магнитных дипольных приемных устройств во втором стволе скважины; причем дипольные приемные устройства содержат: два основных приемных устройства и два понижающих приемных устройства, использование указанных понижающих приемных устройств для устранения прямого сигнала, излученного от указанных передатчиков; индуцирование тока вдоль первого ствола скважины с использованием передатчиков, что приводит к излучению магнитного поля от первого ствола скважины; получение магнитного поля с использованием основных и понижающих приемных устройств, причем измеряют градиентное поле; и использование градиентного поля для определения расстояния между первым и вторым стволами скважины. 3 н. и 19 з.п. ф-лы, 10 ил.

Изобретение относится к направленному бурению скважин. Техническим результатом является повышение точности определения расстояния и направления между скважинами. В частности, предложена скважинная система определения расстояния, содержащая: первую и вторую скважины; систему инжекции тока, содержащую источник переменного тока на поверхности, электрод эмиттера и возвратный электрод; и электромагнитный (ЭМ) датчик, размещенный внутри второй скважины. Причем первая скважина содержит первый конец в непосредственной близости к устью скважины на поверхности пласта и второй, дистальный, конец, размещенный вдоль части опорной оси соосно на протяжении с по меньшей мере частью первой скважины, при этом опорная ось содержит опорную точку на ней и при этом продолговатый токопроводящий элемент размещен внутри по меньшей мере части первой скважины. Кроме того, электрод эмиттера расположен смежно с устьем скважины, а возвратный электрод помещен на поверхности в местоположении, которое, по существу, минимизирует расстояние между возвратным электродом и опорной точкой и обеспечивает оптимизацию тока в первой скважине. 4 н. и 29 з.п. ф-лы, 19 ил.

Предложена дальнометрическая система для ствола скважины и способ, применяемые между стволами первой и второй скважин, причем данная система содержит измерительный преобразователь электромагнитного поля, расположенный в стволе второй скважины, электропроводящую обсадную трубу в стволе первой скважины, источник электрического тока, создающий электрический ток в проводящем элементе, и волоконно-оптический датчик, расположенный вблизи проводящего элемента. Протекание электрического тока вдоль проводящего элемента приводит к возникновению магнитного поля, которое измеряют с помощью измерительного преобразователя. Волоконно-оптический датчик содержит сердечник, чувствительный к магнитному полю, в котором он расположен. Чувствительный сердечник изменяет оптические свойства оптического световода, принимающего форму датчика, причем эти измененные оптические свойства могут быть применены для определения величины электрического тока в месте расположения датчика. Величина тока и измеренное магнитное поле могут быть применены для определения расстояния между стволами первой и второй скважин. 3 н. и 26 з.п. ф-лы, 7 ил.

Настоящее изобретение относится к скважинной дальнометрии и, в частности, к дальнометрическому узлу, использующему передатчики и приемники с магнитными диполями, которые анализируют градиентометрические данные для определения и отслеживания относительного местоположения множественных стволов скважин. Способ включает бурение первого ствола скважины, который содержит удлиненный проводящий корпус. Размещение во втором стволе скважины по меньшей мере двух передатчиков с магнитными диполями и по меньшей мере четырех приемников с магнитными диполями. Индуцирование тока в первом стволе скважины, используя передатчики, что приводит к магнитному полю, испускаемому от первого ствола скважины. Прием магнитного поля, используя указанный приемники, причем градиентное поле измеряют в радиальном направлении по второму стволу скважины. Используют указанное градиентное поле для определения расстояния между первым и вторым стволами скважин. 3 н. и 18 з.п. ф-лы, 11 ил.

Изобретение относится к измерениям дальности во время бурения. Сущность: способ измерений дальности внутри пласта включает передачу асимметричного изменяющегося во времени сигнала от передатчика (114), расположенного внутри ствола (106) скважины, в пласт. Асимметричный изменяющийся во времени сигнал может иметь характеристику сигнала, по меньшей мере частично основанную на скважинной характеристике. Приемное устройство (110), расположенное внутри ствола (106) скважины, может измерять магнитное поле, индуцированное на объект (103) внутри пласта, с помощью асимметричного изменяющегося во времени сигнала. Направление к объекту (103) от ствола (106) скважины может быть определено по меньшей мере частично на основании измерения индуцированного магнитного поля. Технический результат: повышение точности. 2 н. и 18 з.п. ф-лы, 6 ил.

Изобретение относится к направленному бурению скважин. Техническим результатом является повышение точности пластовых измерений для определения местоположения ствола скважины. Предложен способ получения измерений дальности, содержащий этапы, на которых осуществляют: ввод тока в пласт из ствола первой скважины для наведения электромагнитного поля в пласте; прием тока из пласта в стволе второй скважины; измерение электромагнитного поля с помощью по меньшей мере одной антенны, установленной по меньшей мере в одном из стволов первой скважины и второй скважины; идентификацию местоположения ствола третьей скважины в пласте по меньшей мере частично на основе измерений электромагнитного поля и на основе идентифицированного местоположения ствола третьей скважины изменение параметра бурения бурильной компоновки, установленной в пласте за пределами ствола третьей скважины, в которой меняется параметр бурения. Раскрыта также система для реализации указанного способа. 3 н. и 17 з.п. ф-лы, 3 ил.

Изобретение относится к средствам для выполнения скважинного каротажа. Техническим результатом является повышение чувствительности и точности информации в процессе измерений в скважине. Предложен способ проведения измерений в скважине, содержащий этапы, на которых: управляют активацией прибора, расположенного в скважине и имеющего компоновку излучающих антенн и приемных антенн, разнесенных на расстояния, способных работать выбираемыми парами излучатель-приемник. При этом регистрируют глубинный сигнал из глубинного измерения, используя пару излучатель-приемник, и один или несколько малоглубинных сигналов из одного или нескольких малоглубинных измерений, используя одну или несколько других пар излучатель-приемник; обрабатывают один или несколько малоглубинных сигналов, образуют модельный сигнал относительно областей, прилегающих к боковым сторонам и задней стороне прибора; и формируют сигнал опережающего просмотра по существу без вкладов из областей, прилегающих к прибору, путем обработки глубинного сигнала в зависимости от модельного сигнала. Предложены также устройство для проведения измерений в скважине и машиночитаемое запоминающее устройство, имеющее инструкции выполнения действий указанного способа. 6 н. и 25 з.п. ф-лы, 41 ил.

 


Наверх