Патенты автора Мифтахов Динар Ильдусович (RU)

Изобретение относится к технологии регенерации адсорбентов при переработке природного газа. Изобретение касается способа регенерации адсорбентов при переработке природного газа, включает стадии нагрева адсорбента с десорбцией адсорбата и охлаждения адсорбента потоками регенерирующего и охлаждающего инертного газа. В качестве регенерирующего и охлаждающего инертного газа используют сухой азот, имеющий точку росы по воде не выше, чем требуемая точка росы по воде потока, очищенного на адсорбенте. Сухой азот последовательно проходит через слой охлаждаемого адсорбента на стадии охлаждения адсорбента, нагревается до температуры регенерации в рекуперативном теплообменнике и дополнительном нагревательном аппарате, пропускается через слой нагреваемого адсорбента на стадии нагрева адсорбента с десорбцией адсорбата, далее отработанный газ регенерации поступает совместно с десорбатом в виде азото-десорбатной смеси нестационарного состава в рекуперативный теплообменник для нагрева сухого азота, охлаждается в дополнительном охлаждающем аппарате и подается для выравнивания состава азото-десорбатной смеси на смешение с сухим азотом, после чего смешивается с воздухом, направляется в реактор термокаталитического окисления десорбированного адсорбата и далее сбрасывается на свечу. Технический результат - сокращение металлоемкости оборудования, количества используемого газа регенерации и выбросов токсичных продуктов в атмосферу. 17 з.п. ф-лы, 2 ил., 3 табл., 1 пр.

Изобретение может быть использовано на предприятиях газовой промышленности при подготовке природного газа к извлечению криогенным методом метана, этана и широкой фракции легких углеводородов. Способ очистки природного газа от примесей включает стадию абсорбционного извлечения из сырьевого природного газа диоксида углерода и метанола водным раствором амина в абсорбере с последующей регенерацией насыщенного абсорбента в колонне регенерации амина и получением регенерированного абсорбента, кислой воды и кислого газа, далее стадию адсорбционной осушки очищенного природного газа с последующей регенерацией адсорбента частью очищенного и осушенного природного газа. Отработанный газ регенерации объединяют с очищенным природным газом и после охлаждения сепарируют от сконденсированной воды, возвращаемой в емкость подготовки водного раствора амина. Кислую воду из рефлюксной емкости колонны регенерации амина разделяют в отпарной ректификационной колонне на метанол и отпаренную воду. При этом поток кислой воды из рефлюксной емкости колонны регенерации амина делят на две части: первую часть направляют в отпарную ректификационную колонну для разделения, а вторую часть – в колонну регенерации амина в качестве орошения. При этом оптимальное соотношение между первой частью и всем потоком кислой воды из рефлюксной емкости колонны регенерации амина в диапазоне от 100 до 0% определяют из условия минимума суммарного теплоподвода в низ колонны регенерации амина и отпарной ректификационной колонны и/или суммарного теплосъема от потоков верхней части колонны регенерации амина и отпарной ректификационной колонны в расчете на 1 тонну извлекаемого метанола. Заявленное изобретение является энергосберегающим способом подготовки сырьевого природного газа к дальнейшей криогенной переработке за счет использования энергетического потенциала и состава промежуточных технологических потоков. 5 з.п. ф-лы, 2 ил., 5 табл.

Изобретение относится к системе подвода тепла в ректификационную колонну и может найти применение в нефтегазоперерабатывающей, химической и других отраслях промышленности. Система включает первый и второй теплообменные аппараты. Первый теплообменный аппарат, снабженный датчиком уровня конденсата водяного пара, соединяют с нижней частью ректификационной колонны. Часть продукта из нижней части ректификационной колонны поступает в первый теплообменный аппарат для испарения за счет тепла конденсации водяного пара. Парожидкостный или паровой продукт поступает над уровнем жидкой фазы продукта в нижнюю часть ректификационной колонны, создавая паровое орошение. Исходное сырье поступает во второй теплообменный аппарат для нагрева и частичного испарения горячим конденсатом водяного пара и далее поступает на разделение в ректификационную колонну. Охлажденный конденсат водяного пара поступает в насос откачки конденсата и затем подается в систему сбора парового конденсата. Регулирующий клапан обеспечивает расход конденсата водяного пара при условии поддержания образующего гидрозатвор уровня конденсата водяного пара в первом теплообменном аппарате. Изобретение обеспечивает повышение удельного количества передаваемой тепловой энергии теплоносителя при стабильном функционировании. 2 н. и 7 з.п. ф-лы, 1 ил.

Изобретение предназначено для разделения неоднородных систем газ-жидкость типа «туман» на газовую и жидкую фазы и может быть использовано в нефтеперерабатывающей, газовой, нефтехимической, химической, пищевой и других отраслях промышленности для разделения газожидкостных смесей. Вертикальный сепаратор включает вертикально-цилиндрический корпус, штуцер ввода неоднородной системы, штуцер вывода газовой фазы, штуцер вывода жидкой фазы и сепарационные элементы. Сепарационные элементы представляют собой пакеты регулярной многослойной насадки из гофрированных проницаемых пластин. Пакеты пластин образуют в вертикально-цилиндрическом корпусе стенку, состоящую, по крайней мере, из двух секций, сопряженных с вертикально-цилиндрическим корпусом емкости и горизонтальными сегментными перегородками. В нижней части вертикально-цилиндрического корпуса расположена секция сбора выделенной из газа жидкости, соединенная переливными трубами с горизонтальными сегментными перегородками. Технический результат: снижение металлоемкости сепаратора, повышение качества разделения неоднородной системы. 6 з.п. ф-лы, 2 ил.

 


Наверх