Патенты автора Чурляева Ольга Николаевна (RU)

Изобретение относится к способу лазерной наплавки металлических покрытий и может быть использовано при изготовлении инструментов и деталей технологической оснастки. Способ включает подачу порошкообразного присадочного материала на поверхность заготовки и облучение сканирующим лучом лазера зоны подачи присадочного материала. Сканирование лазерного луча осуществляют в направлении, перпендикулярном направлению перемещения луча или заготовки, с частотой лазерного луча f=3-600 Гц и амплитудой сканирования А=(3-30) d, где d - диаметр лазерного луча. Технический результат заключается в расширении площади наплавки и повышении прочностных свойств наплавленного слоя. 2 ил.

Изобретение относится к области машиностроения, в частности к способам оценки прочности сцепления металлических покрытий со стальной поверхностью, и может быть использовано для повышения качества и надежности выпускаемой продукции. Сущность: осуществляют нанесение покрытия в виде кольцевого пояска на цилиндрический образец, механическую обработку покрытия, установку образца в матрицу с цилиндрическим отверстием и отрыв покрытия от подложки путем продавливания цилиндрического образца сквозь отверстие в матрице с последующим определением величины максимальной нагрузки, необходимой для отрыва покрытия. Перед определением максимальной нагрузки с двух сторон кольцевого пояска протачивают торцы с образованием углубления на цилиндрической поверхности образца с углублением h=(1,2÷1,5)r и шириной b=(3÷4)r, где h - углубление на цилиндрической поверхности, b - ширина канавки и r - радиус проточного резца. Технический результат: повышение точности измерения прочности сцепления металлических покрытий со стальной поверхностью. 3 ил.
Изобретение относится к области получения материалов, в частности к составам шихты для шликерных покрытий при формировании защитных покрытий на конструкционные материалы, используемые в энергетике, машиностроении, космической, ядерной технике и других областях промышленности. Шихты для шликерных покрытий, содержащая присадочный материал и связующее вещество, дополнительно содержит оксид меди, при этом в качестве присадочного материала используют мелкодисперсный порошок тугоплавких материалов при следующем соотношении указанных компонентов, мас.%: мелкодисперсный порошок тугоплавких материалов 70-90, оксид меди 5-7, связующее вещество 3-23, при этом в качестве связующего вещества используют оксиэтилцеллюлозу, силикат натрия или калия и воду, при следующем соотношении указанных компонентов, мас.%: оксиэтилцеллюлоза 6,5-7, силикат натрия или калия 27-30, вода - остальное. Изобретение позволяет повысить качество наплавленного слоя.
Изобретение может быть использовано при нанесении лазерной наплавкой на детали покрытий в качестве защитных слоев. Порошкообразная шихта для наплавки содержит дисперсный металлический порошок и армирующий порошок. В качестве металлического порошка использован порошок на никелевой основе с размером частиц 40-150 мкм, а в качестве армирующего порошка - нанопорошок карбида тантала в количестве 10-40% от объема шихты. Шихта обеспечивает повышение твердости и износостойкости покрытия, полученного лазерной наплавкой.
Изобретение относится к области металлургии, в частности к составу светопоглощающих покрытий, используемых при термической обработке углеродистых сплавов. Светопоглощающее покрытие для изделий из углеродистого сплава содержит оксид меди и связующее - оксиэтилцеллюлозу, силикат натрия или калия и воду при следующем соотношении компонентов, мас.%: оксид меди 4,2-4,8, оксиэтилцеллюлоза 4,0-4,4, силикат натрия или калия 25,0-26,5, вода - остальное. Изобретение направлено на повышение коэффициента поглощения и снижение затрат на нагрев при использовании покрытия для термической обработки углеродистых сплавов.

Изобретение относится к области металлургии, в частности к выращиванию волокон из расплава. Способ получения монокристаллических волокон из тугоплавких материалов включает размещение в вакуумной камере питателя исходного материала в виде прутка, подачу лазерного излучения на поверхность исходного материала и вытягивание исходного материала с образованием волокна, при этом при подаче лазерного излучения на поверхность исходного материала лазерный луч сканируют в двух взаимно перпендикулярных плоскостях с частотами f1=f2, равными 200÷300 Гц, с амплитудой A, равной 1,5-5 B, где B - наибольший размер держателя питателя исходного материала. Технический результат изобретения заключается в снижении энергетических потерь лазерного излучения, повышении интенсивности лазерного луча по поперечному сечению и однородности структуры получаемого волокна. 1 ил.

 


Наверх