Патенты автора Быковская Елена Фёдоровна (RU)

Изобретение относится к теплотехнике и может быть использовано в системах охлаждения электронного оборудования. В способе охлаждения электронного оборудования с использованием комбинированных потоков газа и микрокапель, основанном на движении тонкой пленки жидкости за счет потока газа в канале, области электронного компонента орошают потоками микрокапель жидкости с помощью спреера, расположенного на одной из поверхностей канала, причем истечение микрокапель жидкости осуществляется под углом от 10 до 90 градусов в направлении потока газа или рабочей жидкости в канале, который отсчитывается от оси направления потока газа, при этом спреер представляет собой сопло или линейку сопел. Технический результат - повышение эффективности охлаждения высоконапряженных по тепловым потокам электронных компонентов. 1 ил.

Изобретение относится к теплотехнике и может быть использовано в системах охлаждения электронного оборудования. Способ охлаждения электронного оборудования пленочными и капельными потоками жидкости основан на движении тонкой пленки жидкости под действием потока газа в канале и дополнительном орошении поверхности электронного компонента потоками микрокапель жидкости. Смесь газа и микрокапель жидкости формируют в сопловом устройстве путем смешения жидкости с потоком быстродвижущегося газа, который дополнительно подают в сопловое устройство со стороны верхней крышки канала. Полученную смесь газа и микрокапель жидкости подают на электронный компонент таким образом, чтобы поверхность нагреваемого электронного компонента всегда была покрыта тонкой пленкой жидкости и температура нагреваемого электронного компонента не превышала заданную предельную температуру, чтобы формировались протяженные динамические контактные линии газ-жидкость-твердое тело, в которых осуществляется наиболее интенсивное испарение. Технический результат - повышение эффективности охлаждения высоконапряженных по тепловым потокам электронных компонентов. 1 ил.

Изобретение относится к теплотехнике и может быть использовано в системах охлаждения электронного оборудования. В способе охлаждения электронного оборудования пленочными и капельными потоками жидкости с использованием оребрения поверхность электронного компонента орошают потоками микрокапель жидкости с помощью каплеформирователя, расположенного в верхней стенке канала, поверхность электронного компонента структурируют путем нанесения ребер треугольного сечения, ориентированных вдоль течения, при этом каплеформирователь расположен по всей длине электронного компонента. Истечение микрокапель жидкости осуществляют вдоль вершин ребер с таким расчетом, чтобы капли, попадая на не смоченную поверхность ребер, деформировались, формировали существенную суммарную длину контактных линий газ-жидкость-твердое тело и быстро испарялись. Технический результат - повышение эффективности охлаждения высоконапряженных по тепловым потокам электронных компонентов. 2 ил.

Изобретение относится к теплотехнике и может быть использовано в системах охлаждения электронного оборудования. В способе охлаждения электронного оборудования с использованием комбинированных пленочных и капельных потоков жидкости, основанном на движении тонкой пленки жидкости за счет потока газа, согласно изобретению, осушенные области электронного компонента дополнительно орошаются потоками микрокапель жидкости с помощью каплеформирователя, расположенного на верхней стенке канала, над областями электронного компонента с максимальной плотностью теплового потока, причем истечение микрокапель жидкости осуществляют против направления течения газа под углом от 10 до 80 градусов к направлению течения газа. Технический результат - повышение эффективности охлаждения электронных компонентов. 1 ил.

Изобретение относится к области приборостроения, в частности, может быть использовано в устройствах дозирования газов, а также может быть использовано в химической, нефтеперерабатывающей и других областях промышленности. В устройстве для испарения жидкости, содержащем мини- или микроканал для протока газа, в нижней стенке которого имеется каверна с жидкостью прямоугольной формы, согласно изобретению в нижней стенке канала на границе раздела газ-жидкость содержится решетка, состоящая из продольных ребер прямоугольной формы, причем верхняя грань ребра имеет продольную канавку треугольной формы. Технический результат - повышение интенсивности испарения, снижение металлоемкости испарителей. 2 ил.

Изобретение относится к области мини- и микросистем, которые используют в электронике, медицине, энергетике, аэрокосмической индустрии, на транспорте и могут применяться в устройствах для охлаждения электроники. Согласно изобретению конденсатор и сепаратор выполнены в виде плоского охлаждаемого микро- или мини-канала высотой Н<lσ, где lσ - капиллярная постоянная жидкости, а на боковых и торцевой стенках сепаратора вдоль линии пересечения их плоскостью продольного сечения выполнен капиллярный щелевой затвор, представляющий собой узкий плоский щелевой зазор. Технический результат – увеличение эффективности охлаждения и упрощение конструкции конденсатора-сепаратора при снижении массы и габаритов устройства. 3 ил.

Изобретение относится к области мини- и микросистем, которые используются в энергетике и на транспорте и могут применятся в устройствах для охлаждения электроники. В конденсаторе пара, содержащем канал для протока пара, образованный поверхностью конденсации, поверхность конденсации имеет выпуклую криволинейную форму с внутренним продольным ребром, с обеих сторон которого формируются полости для конденсата, при этом R3>R2, где R3 - радиус кривизны поверхности конденсации в верхней части канала конденсатора; R2 - радиус кривизны поверхности конденсации в полости. Технический результат - повышение эффективности конденсатора за счет увеличения интенсивности конденсации и оптимизации течения двухфазного потока. 6 ил.

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники. Изобретение заключается в том, что в канале, на одной из сторон, которая является поверхностью подложки тепловыделяющего элемента, выполнены продольные микроканавки или нанесены продольные полосы гидрофобного нанопокрытия, формирующие микроручейковые течения жидкости. Гидрофобное нанопокрытие, ограничивающее микро-ручейковое течение по краям, может быть нанесено на внутреннюю поверхность всех стенок мини- или микроканала или только на поверхность подложки с обеих сторон от электронного тепловыделяющего элемента. Технический результат - существенная интенсификация теплообмена в микросистемах, устойчивая работа как в земных условиях, так и в невесомости, в том числе при любых нестандартных ситуациях. 2 н. и 2 з.п. ф-лы, 6 ил.

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокие значения коэффициента теплопередачи при течении жидкостей в относительно небольших объемах. В устройстве, включающем плоский мини- или микроканал прямоугольного сечения, одна из стенок которого является подложкой, расположенных на ней одного или нескольких электронных тепловыделяющих элементов, формирователь газового потока, генератор капель, поперек мини- или микроканала между соплом формирователя газового потока и передней кромкой электронного тепловыделяющего элемента выполнен ряд микроотверстий, которые соединены системой трубок с генератором капель. Технический результат - создание устройства, позволяющего достичь эффективного охлаждения микроэлектронного оборудования с локальным тепловыделением. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области микроструктурных технологий. Способ включает нанесение множества наноструктурных областей с гидрофобными свойствами на поверхность 2 микроканала. Наноструктурные области выполняют в виде гидрофобных полос 1 шириной L. Наносят наноструктурные области поперек течения на гладкую поверхность микроканала на расстоянии В друг от друга при отношении L/B≥1. Значения L и В определяют исходя из свойств жидкости и поверхности. Обеспечивается эффективное снижение сопротивления при движении однофазного или двухфазного потока в микроканалах с гладкой поверхностью. 1 ил.

 


Наверх