Патенты автора Бурыкин Валерий Евгеньевич (RU)

Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ формирования на поверхности изделия из никелевого сплава композитного покрытия, содержащего оксид циркония, включает напыление пленки оксида циркония до достижения ею требуемой толщины, при этом перед напылением упомянутой пленки на поверхности изделия формируют первичный сплошной слой из никелевого сплава, соответствующего составу упомянутого изделия, с цирконием и с добавкой стабилизирующего элемента и градиентный переходный нанокомпозитный слой со структурой металл-оксид. Формирование упомянутого первичного слоя и градиентного переходного нанокомпозитного слоя осуществляют с использованием магнетронной системы с двумя совместно распыляющими магнетронами. С помощью первого магнетрона распыляют мишень из упомянутого никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавкой стабилизирующего элемента. Упомянутый первичный слой формируют путем совместного распыления указанных мишеней в атмосфере аргона, причем интенсивность атомного потока, сформированного от упомянутой первой мишени, превышает интенсивность атомного потока от упомянутой второй мишени. Затем осуществляют формирование градиентного переходного нанокомпозитного слоя путем распыления упомянутых мишеней в присутствии кислорода с образованием в упомянутом градиентного слое оксида циркония при неокисленном никелевом сплаве. Соотношение фаз в градиентном переходном слое изменяют с возрастанием доли оксидной фазы с увеличением толщины упомянутого слоя, при этом парциальное давление кислорода при распылении плавно увеличивают до 1,5*10-3 Па, а мощность первого магнетрона, распыляющего первую мишень из упомянутого никелевого сплава, уменьшают вплоть до его полного отключения, при этом получают плавный переход от слоя из никелевого сплава к пленке из оксида циркония без межфазной границы макроскопического размера. Обеспечивается механическая прочность покрытия, повышение его жаропрочности и жаростойкости, а также высокое значение адгезии и когезии покрытия на рабочих поверхностях изделий.
Изобретение относится к напылению теплозащитных покрытий и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на поверхность изделия из никелевого сплава включает формирование на поверхности упомянутого изделия композитного градиентного переходного слоя со структурой металл-оксид и напыление пленки оксида циркония до достижения ею требуемой толщины. Формирование упомянутого градиентного переходного слоя со структурой металл-оксид осуществляют путем осаждения градиентного переходного слоя, содержащего металлическую фазу на основе никелевого сплава, соответствующего составу упомянутой поверхности изделия, и диэлектрическую фазу, содержащую оксиды циркония разной стехиометрии, при этом соотношение фаз в градиентном переходном слое изменяют с возрастанием доли оксидной фазы по мере увеличения толщины пленки. Используют магнетронную систему с двумя магнетронами, причем с помощью первого магнетрона распыляют первую мишень из никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавками стабилизирующих элементов. Градиентный переходный слой формируют путем совместного распыления указанных мишеней. Сначала распыление мишеней осуществляют в атмосфере аргона с обеспечением превышения интенсивности атомного потока, сформированного от упомянутой первой мишени, над интенсивностью атомного потока от упомянутой второй мишени с формированием сплошного металлического слоя. Затем осуществляют распыление в присутствии кислорода с образованием в напыляемой пленке оксида циркония при неокисленном никелевом сплаве. При напылении парциальное давление кислорода плавно увеличивают до 1,5⋅10-3 Па, а мощность первого магнетрона, распыляющего первую мишень из никелевого сплава, уменьшают вплоть до его полного отключения. Обеспечивается механическая прочность покрытия, повышение его жаропрочности и жаростойкости, а также высокое значение адгезии и когезии покрытия на рабочих поверхностях изделий.
Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую поверхность изделия включает формирование на металлической поверхности композитной структуры металл-оксид при совместном напылении металлов и напыление пленки оксида циркония до достижения ею требуемой толщины. В получаемом покрытии, содержащем оксид циркония, стабилизированный иттрием, создают градиентный переходный слой, содержащий две фазы в виде металлической фазы с составом, соответствующим составу защищаемой поверхности, и диэлектрической фазы, содержащей оксид циркония, при этом соотношение фаз в переходном слое изменяют с возрастанием доли оксидной фазы по мере увеличения толщины пленки. Для получения указанного градиентного переходного слоя используют магнетронную систему с двумя магнетронами. При помощи первого магнетрона распыляют первую мишень из никелевого сплава, состав которого соответствует составу металлического изделия, а при помощи второго магнетрона распыляют вторую мишень из циркония с добавками иттрия. Первоначальное распыление мишеней осуществляют в среде аргона, при этом интенсивность атомного потока, сформированного от первой мишени из упомянутого никелевого сплава, превышает интенсивность атомного потока от второй циркониевой мишени. После формирования первичного сплошного слоя из никелевого сплава в рабочую камеру подают кислород с обеспечением реактивного напыления с образованием в напыляемой пленке оксида циркония при неокисленном никелевом сплаве, при этом в процессе напыления парциальное давление кислорода плавно увеличивают до давления 1,5⋅10-3 Па, а мощность первого магнетрона, распыляющего первую мишень из упомянутого никелевого сплава, уменьшают вплоть до его полного отключения. Обеспечиваются механическая прочность покрытия, повышение его жаропрочности и жаростойкости, а также высокое значение адгезии и когезии покрытия на рабочих поверхностях деталей.
Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ формирования на рабочей поверхности детали из никелевого сплава теплозащитного нанокомпозитного покрытия, содержащего оксид циркония, включает предварительную механическую обработку поверхности детали из никелевого сплава, формирование на поверхности детали первичного сплошного слоя из никелевого сплава, соответствующего составу упомянутой детали, с цирконием и с добавкой стабилизирующего элемента, последующее формирование градиентного переходного нанокомпозитного слоя со структурой металл-оксид и напыление пленки оксида циркония до достижения ею требуемой толщины. Формирование упомянутого первичного слоя и градиентного переходного нанокомпозитного слоя осуществляют с использованием магнетронной системы с совместно распыляемыми двумя магнетронами. С помощью первого магнетрона распыляют мишень из упомянутого никелевого сплава, с помощью второго магнетрона распыляют вторую мишень из циркония с добавкой стабилизирующего элемента. Упомянутый первичный слой формируют путем совместного распыления указанных мишеней в атмосфере аргона. Интенсивность атомного потока, сформированного от упомянутой первой мишени, превышает интенсивность атомного потока от упомянутой второй мишени. Затем осуществляют формирование градиентного переходного нанокомпозитного слоя путем распыления упомянутых мишеней в присутствии кислорода с образованием в упомянутом градиентном слое оксида циркония и неокисленного никелевого сплава, при этом соотношение фаз в градиентном переходном слое изменяют с возрастанием доли оксидной фазы по мере увеличения толщины упомянутого слоя, при этом парциальное давление кислорода при распылении плавно увеличивают до 1,5⋅10-3 Па, а мощность первого магнетрона, распыляющего первую мишень из упомянутого никелевого сплава, уменьшают вплоть до его полного отключения. Получают плавный переход от слоя из никелевого сплава к пленке из оксида циркония без межфазной границы макроскопического размера. Обеспечивается механическая прочность покрытия, повышение его жаропрочности и жаростойкости, а также высокое значение адгезии и когезии покрытия на рабочих поверхностях деталей.
Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую поверхность изделия включает формирование на металлической поверхности композитной структуры металл-оксид при совместном распылении металлов, при этом получаемое покрытие из оксида циркония стабилизируют иттрием и создают градиентный переходный слой, содержащий две фазы в виде металлической фазы с составом, соответствующим составу защищаемой поверхности, и диэлектрической фазы, содержащей оксид циркония, стабилизированный иттрием, нанесенной на упомянутую металлическую фазу. Соотношение фаз в переходном слое изменяется с возрастанием доли оксидной фазы по мере увеличения толщины пленки. Для создания градиентного переходного слоя используют магнетронную систему с двумя магнетронами, причем при помощи первого магнетрона распыляют мишень из никелевого сплава, состав которого соответствует составу металлического изделия, а при помощи второго магнетрона распыляют мишень из циркония с добавками стабилизирующего элемента иттрия. Первоначальное распыление мишеней осуществляют в атмосфере аргона, при этом интенсивность атомного потока, сформированного от упомянутой первой мишени, превышает интенсивность атомного потока от упомянутой второй мишени. После формирования первичного сплошного слоя из никелевого сплава в рабочую камеру подают кислород для обеспечения реактивного распыления с образованием в напыляемой пленке оксида циркония при неокисленном никеле. В процессе напыления парциальное давление кислорода плавно увеличивают до давления 1,5⋅10-3 Па, а мощность первого магнетрона, распыляющего первую мишень из никелевого сплава, уменьшают вплоть до его полного отключения, после чего продолжают напыление оксида циркония до достижения пленкой из него требуемой толщины. При проведении указанных операций формируется плавный переход от упомянутого слоя из никелевого сплава к пленке из оксида циркония с механическими свойствами, плавно изменяющимися по толщине получаемого слоя, с обеспечением изотропного распределения внутренних напряжений при циклических термонагрузках. Обеспечивается механическая прочность покрытия, повышение его жаропрочности и жаростойкости, а также высокое значение адгезии и когезии.
Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Теплозащитное нанокомпозитное покрытие, содержащее оксид циркония, нанесенное на поверхность изделия из никелевого сплава с использованием магнетронной системы, содержит первичный сплошной слой, градиентный переходный слой и пленку из оксида циркония. Первичный сплошной слой состоит из никелевого сплава, соответствующего составу упомянутого изделия, с цирконием и с добавками стабилизирующего элемента. Градиентный переходный слой содержит две фазы в виде диэлектрической фазы из оксида циркония и металлической фазы из никелевого сплава, соответствующего составу упомянутой поверхности изделия, и циркония с добавкой стабилизирующего элемента, при этом доля оксидной фазы в переходном слое возрастает по мере увеличения его толщины. Способ формирования упомянутого теплозащитного нанокомпозитного покрытия на поверхности изделия из никелевого сплава характеризуется тем, что осуществляют формирование на поверхности изделия первичного сплошного слоя из никелевого сплава, соответствующего составу упомянутого изделия, с цирконием и с добавкой стабилизирующего элемента, градиентного переходного слоя и напыление пленки из оксида циркония до достижения ею требуемой толщины покрытия. Формирование упомянутого первичного слоя и градиентного переходного слоя осуществляют с использованием магнетронной системы с двумя магнетронами. С помощью первого магнетрона распыляют мишень из упомянутого никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавкой стабилизирующего элемента. Упомянутый первичный слой формируют путем совместного распыления указанных мишеней в атмосфере аргона с интенсивностью атомного потока, сформированного от упомянутой первой мишени, превышающей интенсивность атомного потока от упомянутой второй мишени. Затем осуществляют формирование упомянутого градиентного переходного слоя путем распыления упомянутых мишеней в присутствии кислорода с образованием в переходном слое оксида циркония и неокисленного никелевого сплава. Парциальное давление кислорода при распылении плавно увеличивают до давления 1,5*10-3 Па, а мощность первого магнетрона, распыляющего первую мишень из упомянутого никелевого сплава, уменьшают вплоть до его полного отключения. В частном случае осуществления изобретения в качестве стабилизирующего элемента используют иттрий. Обеспечивается механическая прочность покрытия, повышение его жаропрочности и жаростойкости, а также высокое значение адгезии и когезии. 2 н. и 1 з.п. ф-лы.
Изобретение относится к области материаловедения, в частности к способам напыления теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного покрытия на рабочую поверхность детали из сплава на основе никеля включает нанесение плазменным напылением на предварительно подготовленные поверхности детали покрытия из оксида циркония, стабилизированного иттрием, причем нанесение покрытия осуществляют созданием в нем градиентного переходного слоя с помощью двух магнетронов, при этом посредством первого магнетрона распыляют первую мишень из сплава на основе никеля, состав которого соответствует составу сплава детали, а посредством второго магнетрона распыляют вторую мишень из циркония с добавками стабилизирующего элемента иттрия, причем сначала распыление мишеней осуществляют в атмосфере аргона таким образом, чтобы интенсивность атомного потока, сформированного от первой мишени, превышала интенсивность атомного потока, сформированного от второй мишени, при этом после формирования на поверхности детали сплошного металлического слоя в рабочую камеру подают кислород для формирования в напыляемом покрытии оксида циркония, при этом в процессе напыления парциальное давление кислорода плавно увеличивают до 1,5·10-3 Па, а мощность первого магнетрона уменьшают до его полного отключения, затем продолжают напыление до формирования оксида циркония, стабилизированного иттрием, требуемой толщины, при этом получают наноструктурированное покрытие, содержащее металлическую фазу с составом, соответствующим составу сплава защищаемой поверхности детали, и фазу из оксида циркония, стабилизированного иттрием, с возрастающей от поверхности детали долей фазы оксида циркония. Применение предложенного способа направлено на формирование плавного перехода от металлического материала к оксиду без межфазной границы макроскопического размера, что позволит сформирования на рабочих поверхностях покрытие, имеющее достаточно высокие значения адгезии и когезии.
Изобретение относится к области материаловедения, в частности к способам напыления теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного покрытия на рабочие поверхности детали газотурбинной установки включает нанесение плазменным напылением на предварительно подготовленные поверхности детали из сплава на основе никеля покрытия из оксида циркония, стабилизированного иттрием, причем нанесение покрытия осуществляют созданием в нем градиентного переходного слоя с помощью двух магнетронов, при этом посредством первого магнетрона распыляют первую мишень из сплава на основе никеля, состав которого соответствует составу сплава детали, а посредством второго магнетрона распыляют вторую мишень из циркония с добавками стабилизирующего элемента иттрия, причем сначала распыление мишеней осуществляют в атмосфере аргона таким образом, чтобы интенсивность атомного потока, сформированного от первой мишени, превышала интенсивность атомного потока, сформированного от второй мишени, при этом после формирования на поверхности детали сплошного металлического слоя в рабочую камеру подают кислород для формирования в напыляемом покрытии оксида циркония, при этом в процессе напыления парциальное давление кислорода плавно увеличивают до 1,5*10-3 Па, а мощность первого магнетрона уменьшают до его полного отключения, затем продолжают напыление до формирования оксида циркония, стабилизированного иттрием, требуемой толщины, при этом получают наноструктурированное покрытие, содержащее металлическую фазу с составом, соответствующим составу сплава защищаемой поверхности детали, и фазу из оксида циркония, стабилизированного иттрием, с возрастающей от поверхности детали долей фазы оксида циркония. Изобретение направлено на повышение адгезии и когезии покрытия.
Изобретение относится к области материаловедения, в частности к способам напыления теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного покрытия на рабочие поверхности детали лопастной машины включет нанесение плазменным напылением на предварительно подготовленные поверхности детали из сплава на основе никеля покрытия из оксида циркония, стабилизированного иттрием, причем нанесение покрытия осуществляют созданием в нем градиентного переходного слоя с помощью двух магнетронов, при этом посредством первого магнетрона распыляют первую мишень из сплава на основе никеля, состав которого соответствует составу сплава детали, а посредством второго магнетрона распыляют вторую мишень из циркония с добавками стабилизирующего элемента иттрия, причем сначала распыление мишеней осуществляют в атмосфере аргона таким образом, чтобы интенсивность атомного потока, сформированного от первой мишени, превышала интенсивность атомного потока, сформированного от второй мишени, после формирования на поверхности детали сплошного металлического слоя в рабочую камеру подают кислород для формирования в напыляемом покрытии оксида циркония, при этом в процессе напыления парциальное давление кислорода плавно увеличивают до 1,5*10-3 Па, а мощность первого магнетрона уменьшают до его полного отключения, затем продолжают напыление до формирования оксида циркония, стабилизированного иттрием, требуемой толщины, при этом получают наноструктурированное покрытие, содержащее металлическую фазу с составом, соответствующим составу сплава защищаемой поверхности детали, и фазу из оксида циркония, стабилизированного иттрием, с возрастающей от поверхности детали долей фазы оксида циркония. Применение предложенного способа направлено на формирование плавного перехода от металлического материала к оксиду без межфазной границы макроскопического размера, что позволит сформировать на рабочих поверхностях деталей покрытий, имеющих достаточно высокое значение адгезии и когезии.
Изобретение может быть использовано в производстве деталей турбинных двигателей и установок, которые требуют формирования на рабочих поверхностях покрытий, имеющих высокое значение адгезии и когезии. Наноструктурное композитное покрытие из оксида циркония, стабилизированного иттрием, наносят на поверхности из никелевого сплава методом ионно-лучевого напыления. Покрытие содержит градиентный переходной слой из градиентного нанокомпозитного материала, содержащего две фазы: металлическую фазу с составом, соответствующим составу защищаемой поверхности из никелевого сплава, и оксид циркония различной стехиометрии. Указанный слой содержит оксид циркония при неокисленном никелевом сплаве. Соотношение фаз в переходном слое изменяется с возрастанием доли оксидной фазы по мере увеличения толщины пленки. Изобретение позволяет сформировать плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера.
Изобретение относится к области материаловедения, в частности к способам напыления теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного покрытия на рабочие поверхности детали газотурбинной установки включает нанесение плазменным напылением на предварительно подготовленные поверхности детали из сплава на основе никеля покрытия из оксида циркония, стабилизированного иттрием, причем нанесение покрытия осуществляют созданием в нем градиентного переходного слоя с помощью двух магнетронов, при этом посредством первого магнетрона распыляют первую мишень из сплава на основе никеля, состав которого соответствует составу сплава детали, а посредством второго магнетрона распыляют вторую мишень из циркония с добавками иттрия, причем сначала распыление мишеней осуществляют в атмосфере аргона таким образом, чтобы интенсивность атомного потока, сформированного от первой мишени, превышала интенсивность атомного потока, сформированного от второй мишени, после формирования на поверхности детали сплошного металлического слоя в рабочую камеру подают кислород для формирования в напыляемом покрытии оксида циркония, при этом в процессе напыления парциальное давление кислорода плавно увеличивают до 1,5*10-3 Па, а мощность первого магнетрона уменьшают до его полного отключения, затем продолжают напыление до формирования оксида циркония, стабилизированного иттрием, требуемой толщины. В результате получают наноструктурированное покрытие, содержащее металлическую фазу с составом, соответствующим составу сплава защищаемой поверхности детали, и фазу из оксида циркония, стабилизированного иттрием, причем доля оксидной фазы в переходном слое по мере увеличения толщины пленки возрастает, обеспечивая плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера. Изобретение направлено на формирование на рабочих поверхностях покрытий, имеющих достаточно высокое значение адгезии и когезии.
Изобретение относится к области материаловедения, в частности к напылению теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок, которые требуют формирования на рабочих поверхностях покрытий, имеющих достаточно высокое значение адгезии и когезии. Способ нанесения покрытия из оксида циркония на поверхность изделия из никелевого сплава включает формирование на поверхности изделия из никелевого сплава композитного градиентного слоя со структурой металл-оксид и напыление пленки оксида циркония до достижения ею требуемой толщины. Формирование упомянутого градиентного слоя со структурой металл-оксид осуществляют путем осаждения градиентного переходного слоя, содержащего металлическую фазу на основе никелевого сплава, соответствующего составу упомянутой поверхности изделия, и диэлектрическую фазу, содержащую оксиды циркония разной стехиометрии, при этом используют магнетронную систему с двумя магнетронами. С помощью первого магнетрона распыляют первую мишень из никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавками стабилизирующих элементов. Градиентный переходный слой формируют путем совместного распыления указанных мишеней. Сначала распыление мишеней осуществляют в атмосфере аргона с обеспечением превышения интенсивности атомного потока, сформированного от упомянутой первой мишени, над интенсивностью атомного потока от упомянутой второй мишени с формированием сплошного металлического слоя, затем осуществляют распыление в присутствии кислорода с образованием в напыляемой пленке оксида циркония при неокисленном никелевом сплаве. При напылении парциальное давление кислорода плавно увеличивают до давления 1,5*10-3 Па, а мощность первого магнетрона, распыляющего мишень из никелевого сплава, уменьшают вплоть до его полного отключения. Обеспечивается плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера.

 


Наверх