Патенты автора Гуреев Владимир Олегович (RU)

Изобретение относится к области измерительной техники и касается способа определения места повреждения оптического кабеля. При осуществлении способа с помощью импульсного оптического рефлектометра измеряют характеристику обратного рассеяния оптического волокна, на которой выделяют участок с событием, отображающим повреждение оптического волокна. С помощью фазочувствительного импульсного оптического рефлектометра измеряют характеристику обратного рассеяния того же волокна и по результатам совместной обработки этих характеристик обратного рассеяния определяют участок с повреждением. Затем над кабелем перемещают работающий на одной частоте источник направленного акустовибрационного воздействия и с помощью фазочувствительного рефлектометра измеряют характеристику обратного рассеяния оптического волокна. Место повреждения определяют по местоположению источника акустовибрационного воздействия над кабелем. Местоположение источника акустовибрационного воздействия относительно оси волокна определяется на участке характеристики обратного рассеяния оптического волокна, который был определен как участок с повреждением оптического волокна. Технический результат заключается в уменьшении погрешности измерений и расширении области применения способа. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для поиска трассы прокладки оптического кабеля. Техническим результатом является способ повышения точности нахождения трассы прокладки оптического кабеля, который заключается в создании направленного акусто-вибрационного воздействия на трассу прокладки кабеля, источник которого перемещается продольно-поперечно относительно предполагаемой трассы, посредством управления по отдельному каналу связи. С помощью фазочувствительного импульсного оптического рефлектометра производят измерение характеристик обратного рассеяния оптического волокна, при этом выбирают и фиксируют на местности точку «А» на трассе прокладки с одной стороны кабеля. Указанные выше операции проводят в той же последовательности до тех пор, пока не будет найдена точка «В» на трассе с другой стороны кабеля, для которой измеренные параметры совпадут с заданной погрешностью с распределениями амплитудной и фазовой характеристик принимаемого рефлектометром сигнала на частоте воздействия в точке «А», после чего определяют местоположение кабеля в середине отрезка прямой, соединяющей точки «А» и «В». 1 ил.

Изобретение относится к измерительной технике и может быть использовано для поиска трассы прокладки оптического кабеля. Технический результат состоит в расширении области применения. Для этого когерентным фазочувствительным оптическим рефлектометром, работающим во временной области, измеряют характеристику обратного рассеяния оптического волокна кабеля, по которой определяют характеристики распределений акустических сигналов вдоль оптического кабеля, вдоль трассы прокладки оптического кабеля перемещают средство передвижения с источником акустического сигнала, с помощью оборудования глобальной позиционирующей системы определяют координаты средства передвижения, и по характеристикам распределений акустических сигналов вдоль оптического кабеля определяют расстояния от оптического кабеля до средства передвижения, по которым, зная координаты средства передвижения, определяют координаты оптического кабеля, при этом вдоль трассы прокладки оптического кабеля перемещают не одно, а группу средств передвижения с источниками акустических сигналов, причем в качестве группы средств передвижения перемещают рой беспилотных летательных аппаратов (БПЛА), соединенных каналами связи между собой и с центральной станцией управления, а на каждом БПЛА источник акустического сигнала формирует сигнал на акустической частоте, отличной от акустических частот источников акустических сигналов других БПЛА в рое, через каналы связи управляют траекторией полета БПЛА по заданным координатам в рое, взаимным расположением БПЛА в рое и высотой полета БПЛА над поверхностью земли в рое, с помощью оборудования глобальной позиционирующей системы определяют координаты каждого БПЛА в рое, и по характеристикам распределений акустических сигналов вдоль оптического кабеля, выделяя параметры акустических сигналов на частотах, формируемых источниками акустических сигналов БПЛА в рое, по которым идентифицируют отдельные БПЛА, определяют расстояния от оптического кабеля до БПЛА, по которым, зная координаты БПЛА, определяют координаты оптического кабеля. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для поиска трассы прокладки оптического кабеля. Согласно способу поиска трассы прокладки оптического кабеля создают направленное акустовибрационное воздействие на кабель, источник направленного акустовибрационного воздействия перемещают продольно-поперечно относительно предполагаемой трассы прокладки кабеля и по отдельному каналу связи управляют его перемещениями и уровнем акустовибрационного воздействия, и с помощью фазочувствительного импульсного оптического рефлектометра измеряют характеристику обратного рассеяния оптического волокна. При этом над предполагаемым местоположением оптического кабеля на фиксированном расстоянии друг от друга размещают два работающих на разных частотах источника направленного акустовибрационного воздействия, не изменяя расстояния между ними, изменяют угол между соединяющей их прямой и предполагаемой осью трассы прокладки, добиваясь совпадения местоположений отображений сигналов частот этих источников на характеристике обратного рассеяния оптического волокна, измеряемой фазочувствительным импульсным оптическим рефлектометром. Затем, не изменяя расстояния между источниками направленного акустовибрационного воздействия и угла между соединяющей их прямой и предполагаемой осью трассы прокладки, перемещают их относительно предполагаемой трассы прокладки кабеля, добиваясь равенства уровней сигналов частот источников направленного акустовибрационного воздействия, отображаемых на характеристике обратного рассеяния оптического волокна, измеряемой фазочувствительным импульсным оптическим рефлектометром. После чего определяют трассу прокладки кабеля по местоположению центра оси между источниками направленного акустовибрационного воздействия, а направление трассы прокладки оптического кабеля по направлению перпендикуляра к этой оси. Технический результат – расширение области применения. 2 ил.

Изобретение относится к технике связи и может использоваться в системах связи по оптическим волокнам кабельных линий с низкоскоростной передачей данных. Технический результат состоит в расширении области применения. Для этого в способе симплексной передачи данных по оптическому волокну кабельной линии, заключающемуся в том, что оптическое излучение от источника когерентного оптического излучения вводят в оптическое волокно волоконно-оптического кабеля, воздействуют через волоконно-оптический кабель на оптическое волокно на локальном участке кабельной линии акустовибрационным сигналом от передатчика, модулируют оптическое излучение акустовибрационным сигналом и на дальнем конце принимают модулированное оптическое излучение фотоприемником, с помощью которого выделяют передаваемый сигнал, при этом воздействуют акустовибрационным сигналом с несущей. 1 ил.
Тренажер для отработки комплекса задач по исследованию астрономического объекта участниками космической экспедиции содержит рабочее место оператора, средства имитации и визуализации реальных условий проведения исследований, графическую станцию, джойстики интерактивного управления объектами, соединенные определенным образом. Графическая станция содержит по меньшей мере два монитора отображения закабинной обстановки, нашлемную систему отображения с очками с OLED матрицей и магнитным датчиком позиционирования. Обеспечивается повышение уровня и качества обучения. 2 з.п. ф-лы.

 


Наверх