Патенты автора Фоминченко Геннадий Леонтьевич (RU)

Изобретение относится к области радиотехники и может использоваться в наземных системах активной обзорной однопозиционной радиолокации для обнаружения и определения местоположения, параметров движения и траекторий перемещающихся в пространстве воздушных целей. Достигаемый технический результат - более точное определение параметров движения и траекторий лоцируемых воздушных целей. Для достижения технического результата рассматривают движение каждой воздушной цели как последовательность перемещений по многогранной поверхности, аппроксимирующей лучом, задаваемым вектором наклонной дальности цели. Для образования трилатерационной системы используют вспомогательные точки В на оси абсцисс и D на оси ординат, отстоящие на расстояние d от начала координат, и вычисляют значения дальностей R от них до цели, значения прямоугольных координат целей, формируют размеры зон селекции целей по дальности и угловым координатам. При повторном обзоре измеряют значения наклонных дальностей, азимутов и углов места целей и определяют принадлежность новых отсчетов к начальным участкам траекторий ранее обнаруженных целей. Вычисляют для каждой сопровождаемой цели значения дальностей и координат. Используют экстраполированные значения прямоугольных координат с выходов фильтров Калмана для формирования зон селекции в точках Аk+2 траекторий целей. По результатам последующих обзоров осуществляют обнаружение траекторий целей по критерию «три из трех», вычисляют значения расстояний, пройденных целями за время обзора, модулей векторов их скоростей и пространственных курсовых углов, а также высот полета и углов пикирования или кабрирования. В последующих обзорах измеряют координаты целей и производят сопровождение и построение их траекторий. 2 ил.

Изобретение относится к области радиотехники и может быть использовано в наземных системах обзорной радиолокации. Достигаемый технический результат - определение значений дальностей, угловых координат, модулей скоростей движения авиационно-космических объектов (АКО), их пространственных курсовых углов, углов пикирования или кабрирования и траекторий движения. Технический результат достигается тем, что образуют двухпозиционную радиолокационную систему в составе активного трехкоординатного радиолокатора, расположенного в точке 0 - начале системы координат, и ретранслятора отраженных от объектов сигналов, расположенного в точке В на оси абсцисс х на расстоянии d от начала координат, рассчитывают оценочные прямоугольные координаты АКО относительно точки стояния активного радиолокатора, пересчитывают их к точке стояния ретранслятора, определяют оценочные значения азимутов и углов места объектов относительно точки стояния ретранслятора. Затем вычисляют значения дальностей RB,k АКО относительно точки стояния ретранслятора, значения абсцисс объектов для точек Ak траекторий и точные значения косинусов углов на наклонных плоскостях 0Akxk между осью абсцисс и наклонными дальностями R0,k. Вычисляют на наклонных плоскостях 0AkD, проходящих через вспомогательную точку D на оси ординат у, отстоящую от начала координат на расстояние d, значения косинусов углов между наклонными дальностями R0,k и осью ординат и значения дальностей RD,k от точки D до объектов. После этого определяют средние за М зондирований значения дальностей RD,k, вычисляют и запоминают усредненные значения прямоугольных координат, а также усредненные значения угловых координат АКО, повторяют вычисления для точек Ak+1 траекторий объектов в моменты времени tk+1, запоминают их значения и определяют приращения прямоугольных координат, точных Δxk+1,k и усредненных за время обзора Тобз=tk+1-tk=Δtk+1,k, вычисляют расстояния, пройденные АКО за интервал времени Тобз, модули скоростей движения объектов, значения их пространственных курсовых углов и углов пикирования (кабрирования). Периодически повторяя операции по обзору заданного сектора пространства, измерению первичных параметров (дальностей, угловых координат) и расчету параметров движения (курсовых углов, векторов скорости и углов пикирования или кабрирования) для всех лоцируемых АКО, строят траектории их движения, аппроксимируя их векторными отрезками . 2 ил.

Изобретение относится к области радиотехники и может быть использовано в наземных системах обзорной радиолокации. Достигаемый технический результат – высокоточное определение координат и траекторий перемещающихся в пространстве воздушно-космических объектов (ВКО) в расширенной рабочей зоне. Технический результат достигается за счет разработки операций способа многопозиционной активно-пассивной радиолокации и вывода математических соотношений, позволяющих определить значения модулей скорости движения объектов, их пространственных курсовых углов и углов пикирования (кабрирования), а также за счет определения структуры и порядка функционирования РЛС, реализующей способ обзорной активно-пассивной латерационной радиолокации ВКО. 2 ил.

Изобретение относится к области радиотехники и может применяться в системах трехкоординатной полуактивной радиолокации с использованием, в качестве сигналов подсвета, излучений радиоэлектронных систем различного назначения, в частности сигналов цифрового телевизионного вещания стандарта DVB-T2, для определения координат, скоростей и траекторий перемещающихся в пространстве воздушных объектов (ВО), в том числе маловысотных. Достигаемый технический результат - прогнозирование траектории движения ВО. Указанный результат достигается тем, что используя измеренные значения угловых координат воздушного объекта, используя измеренные значения угловых координат βk и εk ВО в точках Ak траектории, где k - номер точки траектории, а также значения задержек по времени τk, используя измеренные значения абсолютного доплеровского сдвига частоты ƒ∂k и величины пространственных курсовых углов, вычисляют модули скоростей ВО в точках Ak траектории как где λ - длина волны излучения телевизионного центра (ТЦ), где qk0 – пространственные курсовые углы ВО относительно приемной станции бистатической радиолокационной системы, qkb – пространственные курсовые углы относительно ТЦ в составе бистатической радиолокационной системы, после чего осуществляют построение траектории движения ВО в пространстве, используя измеренные значения его угловых координат, задержек отраженных от него сигналов подсвета и доплеровских сдвигов частоты на трассах распространения, а также рассчитанные значения наклонных дальностей, пространственных курсовых углов и скоростей движения объекта. 2 ил.

Изобретение относится к области радиотехники и может быть использовано в наземных системах обзорной активной радиолокации и радиовидения. Достигаемый технический результат - определение значения углового разрешения лоцируемых объектов (ЛО), разрешение отдельных элементов групповых ЛО и более точное определение их траекторий. Технические результаты достигаются тем, что используют цифровую антенную решетку или аналоговую антенную решетку с цифровой обработкой сигналов и прямоугольной формой апертуры, диаграммы направленности которой образуют в пространстве моноимпульсную группу лучей (МГЛ), разбивают заданную область обзора пространства на участки, осуществляют дискретный обзор и производят обнаружение всей совокупности ЛО, измеряют и запоминают параметры движения ЛО, пересчитывают их угловые координаты (УК) в УК на плоскости наклонных дальностей и вычисляют величины наклонных курсовых углов ЛО в точках Аe, задают координаты центра интервала синтезирования апертуры антенны на наклонной плоскости и определяют координаты центра интервала синтезирования в координатах «азимут и угол места», вычисляют величину максимального приращения доплеровских сдвигов частоты несущей в точках половинной мощности диаграммы направленности на ее противоположных склонах, задают частоту повторения зондирующих импульсов, определяют дальности до объекта на границах интервала синтезирования, длину интервала синтезирования, время синтезирования и интервал времени от момента t0 до начала этапа синтезирования, задают величину желательной угловой разрешающей способности РЛС по угловым направлениям и вычисляют число элементов разрешения на апертуре, аппроксимируют функцию, описывающую зависимость наклонной дальности от времени прохождения объектом интервала синтезирования, тремя членами ряда Тейлора, формируют отсчеты опорной функции, перемещают равносигнальное направление (РСН) МГЛ в определенное положение, в определенный момент времени излучают в течение tC зондирующие импульсы с заданной частотой повторения и принимают эхо-сигналы от объекта или элементов групповых объектов (ЭГО), селектируют принятые сигналы по дальности, производят их аналого-цифровые преобразования, запоминают их и формируют в течение времени tC траекторный сигнал (ТС), перемножают отсчеты ТС и отсчеты опорной функции, демодулируя таким образом ТС, вычисляют точечное быстрое преобразование Фурье результата перемножения и модули его отсчетов, определяют значения частот демодулированного ТС, определяют углы отклонения ЭГО от РСН, определяют угловые координаты ЭГО и, используя эти уточненные значения, а также измеренные величины наклонной дальности, скорости и курсового угла для точек местонахождения ЛО, строят уточненные траектории движения группового объекта и его элементов на участке ее кусочно-линейной аппроксимации. 4 ил.

Изобретение относится к области радиотехники и может использоваться в системах обзорной пассивной радиолокации и радиотехнического наблюдения для однопозиционного высокоточного определения скоростей, координат и траекторий перемещающихся в пространстве радиоизлучающих объектов (РИО). Достигаемый технический результат - возможность измерения по единому алгоритму направлений и скоростей движения РИО, перемещающихся в пространстве в произвольных направлениях и с переменной высотой полета, а также построение их траекторий. Для достижения технического результата построение траектории движения каждого объекта производят на вспомогательной наклонной плоскости, проходящей через прямолинейный участок траектории в пространстве и лежащую вне траектории точку наблюдения, причем на этой плоскости вычисляют, как указано в заявке, углы ck,1, каждый из которых является гипотенузой сферического прямоугольного треугольника с катетами Δβk,1 и Δεk,1, лежащими на линиях координат азимута и угла места, и равен угловому размеру проекции на небесную сферу пути объекта за время Δtk,1=tk-t1. На соседних участках траектории вычисляют величину отношения приращений несущей с учетом эффекта Доплера и определяют курсовой угол РИО на вспомогательной плоскости, а затем вычисляют значение модуля вектора скорости объекта, расстояние, пройденное РИО за интервал времени Δt3,1 под углом с3,1, и наклонные дальности до точек А3 и A1, затем определяют углы и расстояния для последующих точек Ak, при k>3, а также наклонную дальность до точки А1 с использованием величин Sk,1 и ck,1 для обнаружения начала маневра РИО, а для дальнейшего построения его траектории на следующем участке кусочно-линейной аппроксимации повторяют аналогичные расчеты. 4 ил.

Изобретение относится к области радиотехники и может использоваться в системах пассивной радиолокации, радиопеленгации и радиотехнического наблюдения для однопозиционного определения направления и скорости движения в пространстве радиоизлучающих объектов (РИО), селекции их по скорости, а также определения местоположения и траекторий движения. Достигаемый технический результат изобретения - возможность измерения направления движения РИО (курсового угла), величины модуля линейной скорости, наклонной дальности и траектории движении РИО. Указанный результат достигается за счет того, что восстанавливают, зная вид модуляции, несущую частоту принятого сигнала, формируют в соответствующие моменты времени и запоминают значения ее отсчетов, представляют результаты в виде соответствующей зависимости от времени, фильтруют полученную зависимость для уменьшения ошибок измерений, получая усредненную зависимость, выбирают из зависимости и фиксируют в заданные моменты времени требуемые для вычислений значения несущей частоты сигнала, интерполируют полученные усредненные угловые зависимости азимута и угла места, вычисляют интервалы времени прохождения объектом соответствующих азимутальных секторов, вычисляют приращения доплеровских сдвигов частоты принимаемых сигналов, вычисляют интерполированные и экстраполированные значения дальностей на интервале наблюдения, определяют критерий сохранения гипотезы о равномерном и прямолинейном движении РИО, определяют наклонные дальности и высоты по соответствующим формулам, на основании соответствующих вычислений строят траекторию движения РИО в пространстве на интервале наблюдения, проверяя справедливость гипотезы о равномерном и прямолинейном движении РИО, при этом устройством, реализующим способ, является угломерно-разностно-доплеровская радиолокационная система, выполненная определенным образом. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к области радиотехники и может быть применено в системах моноимпульсной радиолокации и радиопеленгации, использующих антенную решетку и цифровую обработку сигналов. Достигаемый технический результат изобретения - повышение точностных характеристик и быстродействия, вплоть до определения угла прихода сигнала по единственной его реализации. Для достижения технического результата по первому варианту способа, до приема сигналов осуществляют моделирование процесса их приема и обработки, при котором используют весовую функцию Хэмминга, обеспечивающую соответствующий уровень боковых лепестков и далее определяемого значения угла смещения, ширину рабочей зоны пеленгации не менее двукратной ширины диаграммы направленности парциального канала по уровню половинной мощности, в процессе моделирования определяют на основе весовой функции и параметров антенной решетки конкретный вид функций, параметрически зависящих от угла смещения, разлагают нечетную функцию, описывающую пеленгационную характеристику, по нечетным степеням текущего угла в ряд Маклорена, определяют предварительное значение угла смещения, вычисляют окончательное значение угла смещения, использованную при моделировании весовую функцию и определенное в результате моделирования значение угла смещения используют при формировании диаграмм направленности антенной решетки, получают значение сигнала рассогласования и вычисляют значение угла прихода сигнала источника радиоизлучения соответствующим образом. Для достижения технического результата по второму варианту определяют окончательное значение угла смещения как результат решения задачи, обеспечивающий соответствие пеленгационной характеристики кубической функции с отклонением только в седьмом и более высоких порядках разложения, далее использованную при моделировании весовую функцию и определенное в результате моделирования значение угла смещения используют при формировании диаграмм направленности антенной решетки, приеме и обработке сигнала, получая значение сигнала рассогласования, после чего вычисляют значение угла прихода сигнала источника радиоизлучения определенным образом. Примером реализации способов по первому и второму вариантам является обзорный моноимпульсный амплитудный суммарно-разностный пеленгатор с использованием антенной решетки и цифровой обработки сигналов, выполненный определенным образом. 3 н.п. ф-лы, 6 ил.

 


Наверх