Патенты автора Яковлев Михаил Викторович (RU)

Изобретение относится к противометеоритной защите космического аппарата (КА). Устройство содержит многослойный экран в виде параллельных гребенок, выполненных из перфорированной алюминиевой конструкции (2). Конусообразные зубцы гребенок имеют вершины (3), покрытые твердым сплавом, а пространство между зубцами заполнено углерод-углеродным материалом (4). Зубцы наклонены в наиболее вероятном, с учетом орбиты КА, направлении подлета к нему частиц космического мусора и микрометеороидов. Перед каждой гребенкой расположен слой (1) полимерного материала, причем соседние гребенки смещены относительно друг друга так, что при любом направлении подлета опасных частиц обеспечивается их гарантированное соударение хотя бы с одной из вершин (3). Техническим результатом является повышение надежности защиты КА от микрометеороидов и мелких частиц космического мусора. 1 ил.

Изобретение относится к управлению относительным движением активного (АКА) и пассивного (ПКА) космических аппаратов. Способ включает введение в систему наблюдения и управления АКА программы с визуальным образом ПКА, например свернутым до индикаторной линии на контуре ПКА. АКА выводят на орбиту ПКА на расчетное расстояние между центрами их масс, включают систему наблюдения за ПКА, сравнивают показания размера и положения фактической индикаторной линии с данными индикаторной линии визуального образа ПКА, определяют угловую скорость собственного одноосного вращения ПКА и выдают команды для импульсного включения двигательной установки на придание вращения АКА, синхронного с вращением ПКА. Технический результат состоит в упрощении системы управления движением АКА. 3 ил.
Изобретение относится к управлению движением космических аппаратов (КА), например сервисного (СКА) и обслуживаемого (ОКА) в процессе их стыковки. Для управления используют измерительную систему в составе трёх радиоизотопных источников β-излучения, установленных на СКА, и детекторов β-излучения, установленных на ОКА. Источники β-излучения помещают в контейнеры с крышками, поглощающими электроны с энергией 1 МэВ и открываемыми при стыковке. Активность β-источников регулируют в зависимости от их расстояния до β-детекторов путём смены источников внутри контейнера, а уровень активности выбирают таким, чтобы скорость счёта детекторами импульсов от β-излучения превышала скорость счёта от фоновых ионизирующих излучений. Положение СКА относительно ОКА регулируют, выравнивая скорость счета в β-детекторах. Скорость сближения СКА и ОКА до момента их стыковки снижают по мере роста данной скорости счета. Техническим результатом является упрощение обработки регистрируемых детекторами сигналов и повышение надежности системы стыковки в целом.
Изобретение относится к космической технике и может быть использовано для очистки околоземного космического пространства (ОКП) от относительно крупного по размеру космического мусора, такого как прекратившие активное существование космические аппараты (КА), разгонные блоки (РБ), последние ступени ракет (ПСР). Устройство очистки околоземного космического пространства от крупногабаритных объектов космического мусора содержит крупноячеистую сеть, выполненную в форме конуса, основание которой закреплено по периметру раздвижной управляемой рамки, а ее вершина через шаровой механизм связана с тросовой системой космического аппарата, при этом рамка снабжена двигателями малой тяги.
Изобретение относится к области управления движением космических аппаратов. Способ определения направления лазерного луча на космический аппарат, принимающий сигналы лазерной космической связи, заключается в том, что устанавливают на передающем и принимающем космических аппаратах приемно-передающие радиотехнические устройства и источник лазерного излучения. Управляют направлением лазерного луча по азимутальному углу и углу места из условия сканирования лазерным лучом заданной области космического пространства. С передающего космического аппарата излучают лазерный сигнал в направлении принимающего космического аппарата. После регистрации этого сигнала на принимающем космическом аппарате в направлении передающего космического аппарата излучают радиосигнал, по параметрам которого в момент регистрации определяют направление лазерного луча. Достигается повышение оперативности определения направления лазерного луча.
Изобретение относится к управлению движением космических аппаратов (КА), производящих инспекцию других КА на орбите. Способ включает выведение КА-инспектора на опорную орбиту, аргумент широты которой совпадает с аргументом широты инспектируемого КА. При этом данную опорную орбиту располагают в плоскости и ниже близкой к ней орбиты инспектируемого КА, обеспечивая возможность наблюдения инспектируемого КА по направлению в зенит. Технический результат состоит в улучшении условий наблюдения инспектируемого КА с борта КА-инспектора в процессе сближения КА и уменьшения вероятности обнаружения КА-инспектора с борта инспектируемого КА.
Изобретение относится к управлению движением космических аппаратов (КА), в частности, при удалении крупногабаритных фрагментов космического мусора (ФКМ) из области рабочих орбит КА в зону захоронения. Способ включает облучение ФКМ с борта КА пучком ускоренных ионов в направлении увода ФКМ. Пучок направляют в область отрезка между выбранными реперными точками на изображении (силуэте) ФКМ и изменяют направление пучка до получения неизменной по времени длины данного отрезка. Затем вращение КА может быть синхронизировано с вращением отрезка во фронтальной плоскости, а максимум пучка направлен в середину отрезка. При увеличении расстояния между другими выбранными реперными точками операции повторяются. Технический результат состоит в повышении надёжности синхронизации угловых движений КА и ФКМ при бесконтактном удалении последнего с орбиты.
Изобретение относится к области оптического приборостроения и касается устройства для ориентации космического аппарата по направлению лазерного луча. Устройство содержит плоскопараллельную пластину, выполненную из прозрачного материала с высоким показателем преломления. В нижней части пластины расположена матрица с установленными в ее ячейках пикселями различной спектральной чувствительности. В верхней части пластины по центру матрицы установлен коллиматор с диаметром отверстия, соизмеримым с размером ячейки матрицы. Поперечный размер матрицы выбран исходя из толщины пластины и максимального значения угла преломления луча лазера в заданном диапазоне спектра излучения. Технический результат заключается в упрощении конструкции устройства.
Изобретение относится к области управления движением космических аппаратов (КА) и может быть использовано для навигации космических аппаратов в дальнем космосе. Способ включает сканирование лазерным лучом заданной области пространства путём отражения луча от зеркала на поворотной платформе, установленной в электромеханическом подвесе. Движение платформы по азимуту и углу места задают системой электромагнитов, питаемых током в виде пилообразной последовательности импульсов. Направление на космический объект (КО) определяют по параметрам импульсов развертки, при которых зарегистрирован сигнал отраженного от КО лазерного излучения. Направление на космический объект определяют в повторных сеансах. По результатам обработки данных повторных сеансов регулируется ток электромагнитов и задается режим перемещения лазерного луча соответственно направлению и скорости углового перемещения КО относительно источника лазерного излучения. Повышается дальность контролируемых космических объектов.
Изобретение относится к области радиационных измерений и может быть использовано для раздельной регистрации мононаправленных нейтронов и гамма-квантов, действующих совместно, при работе на ядерно-физических установках различного типа и назначения. Предлагается способ раздельной регистрации мононаправленных нейтронов и гамма-квантов, действующих совместно, согласно которому излучения регистрируют детектором, содержащим изготовленные из материалов с близкими эффективными атомными номерами корпус, металлический коллектор, водородосодержащую и не содержащую водород диэлектрические пластины. Коллектор выполняют в виде двух пластин, которые разделяют электростатическим экраном. Между каждой из пластин коллектора и корпусом располагают диэлектрические пластины из водородосодержащего материала, а между пластинами коллектора и электростатическим экраном располагают диэлектрические пластины из материала, не содержащего водород, при этом толщину диэлектрических пластин выбирают не менее пробега наиболее высокоэнергетических вторичных электронов, сигнал от каждого коллектора разветвляют по двум каналам, которые попарно соединяют и подключают к регистраторам через схему вычитания и схему суммирования. Изобретение обеспечивает раздельную регистрацию мононаправленных нейтронов и гамма-квантов, действующих совместно.

Изобретение относится к области авиационной техники и может быть использовано для противодействия преднамеренному ослеплению пилотов лазерным излучением физическими лицами при выполнении снижения и посадки авиалайнеров. Способ противодействия преднамеренному воздействию на пилотов лазерным излучением предусматривает установку на летательном аппарате сферической оболочки, на поверхности которой располагают приемные датчики лазерного излучения. По показаниям датчиков определяют направление на источник помех лазерного излучения. В карданном подвесе монтируют бортовой источник лазерного излучения, который излучает лазерный луч в направлении на источник помех лазерного излучения по сигналу блока вычислителя при срабатывании приемных датчиков. Мощность бортового источника лазерного излучения выбирают из условия недопущения необратимого поражения органов зрения физических лиц, создающих помехи лазерного излучения. Обеспечивается противодействие физическим лицам, ослепляющим пилотов авиалайнеров.

Изобретение относится к области наблюдения или слежения за полетом космических аппаратов и может быть использовано для автономного безопасного сближения сервисного космического аппарата с обслуживаемым космическим аппаратом. Практическое использование предлагаемого изобретения связано с выполнением операций орбитального обслуживания в околоземном космическом пространстве и за его пределами. Для безопасного сближения сервисного космического аппарата с обслуживаемым космическим аппаратом сближение выполняют по данным лидара и видеорегистратора, установленных на сервисном космическом аппарате. На плоском экране видеорегистратора выделяют фрагмент изображения обслуживаемого космического аппарата, выполняют контролируемые сближения до кратного увеличения размеров изображения выделенного фрагмента. В контролируемых сближениях определяют размер выделенного фрагмента по данным лидара и расстояние между космическими аппаратами по данным видеорегистратора. Очередные контролируемые сближения выполняют с меньшей скоростью при наблюдении фрагментов меньшего размера до достижения безопасной скорости механического контакта. Обеспечивается безопасное сближение сервисного космического аппарата с обслуживаемым космическим аппаратом.
Изобретение относится к области управления движением космических аппаратов (КА) и может быть использовано для навигации КА в дальнем космосе. Способ включает сканирование лазерным лучом заданной области пространства путём отражения луча от зеркала на поворотной платформе, установленной в электромеханическом подвесе. Движение платформы по азимуту и углу места задают системой электромагнитов, питаемых током в виде пилообразной последовательности импульсов. Направление на космический объект (КО) определяют по параметрам импульсов развертки, при которых зарегистрирован сигнал отраженного от КО лазерного излучения. Интенсивность лазерного излучения в источнике модулируют гармоническим колебанием, отраженное от космического объекта лазерное излучение регистрируют фотоумножителем, а зарегистрированные сигналы усиливают радиотехническим устройством, настроенным на частоту гармонических колебаний излучения в источнике. Повышается дальность контролируемых КО.

Изобретение относится к области радиационных измерений. Предлагается способ определения электрических сигналов в конструкциях диэлектрик-металл при действии высокоинтенсивного импульсного ионизирующего излучения по результатам измерений на статических источниках излучения низкой интенсивности, согласно которому компенсируют электретные заряды в диэлектрическом материале, облучают конструкцию на статическом источнике излучения низкой интенсивности со спектральным составом, близким к спектральному составу высокоинтенсивного импульсного излучения, измеряют ток между электродами облучаемой конструкции, определяют электрические сигналы при действии высокоинтенсивного импульсного излучения по измеренному току, причем регистрируют два устойчивых состояния тока и определяют соответствующие значения критериального параметра, зависящие от мощности поглощенной дозы и продолжительности облучения, определяют электрические сигналы при действии высокоинтенсивного импульсного излучения по току, измеренному при критериальном параметре, соответствующем условиям высокоинтенсивного импульсного облучения. Технический результат – повышение точности измерения ионизирующего излучения. 1 ил.

Изобретение относится к ионно-плазменной установке для нанесения покрытий на поверхность металлических внутрисосудистых стентов, преимущественно из оксинитрида титана. Установка содержит шлюзовую камеру (6) с рабочим столом (8) для загрузки изделий, генератор газовой плазмы (7) для предварительной ионно-плазменной обработки изделий, цилиндрическую вакуумную камеру (1) с аксиально расположенной внутри ее объема дуальной магнетронной распылительной системой (МРС), верхнюю крышку (4) для присоединения затвора (5) шлюзовой камеры (6), высоковакуумную откачную систему, трехканальную систему подачи газов (11), систему автоматического управления (16), средства контроля технологического процесса, а также источники питания: МРС (12), потенциала смещения рабочего стола (13), накала катода (14) и газового разряда (15) генератора плазмы. МРС состоит из двух магнетронных электродов (2), каждый из которых включает цилиндрический катод (3) с собственной магнитной системой. Магнетронные электроды (2) изолированы относительно друг друга и корпуса вакуумной камеры (1). Технический результат состоит в обеспечении равномерности осаждения покрытий на внутрисосудистых стентах - изделиях, имеющих сложную пространственную геометрию. 5 з.п. ф-лы, 2 ил.

Изобретение относится к области средств наблюдения или слежения за полетом космических аппаратов (КА) и может быть использовано для автономного управления строем КА. Согласно способу на КА устанавливают приемно-передающие радиотехнические устройства, излучатели и приемники оптических сигналов. Позиционно-чувствительный приемник оптических сигналов ведущего КА выполняют в виде набора плоских детекторов, расположенных на поверхности сферической оболочки. Ориентируют лазерные излучатели ведомых КА на позиционно-чувствительный приемник ведущего КА. По показаниям сигналов оптического излучения, принятого на ведущем КА и одновременно отраженного от поверхности плоских детекторов и принятого на ведомых КА, регулируют относительное движение и положение ведомых космических аппаратов в составе строя. По радиокомандам ведущего КА корректируют расстояние между ведущим КА и ведомыми КА до достижения требуемых характеристик строя. Плоские детекторы выполняют в виде взаимно контактирующих трапеций, расположенных последовательно вдоль широтных и меридианных линий на поверхности сферической оболочки. Повышается точность управления строем КА.
Изобретение относится к области средств наблюдения или слежения за полетом космических аппаратов и может быть использовано для определения объекта, инспектирующего космический аппарат в пассивном режиме. Для определения объекта, инспектирующего космический аппарат в пассивном режиме, регистрируют зоны обзора космического пространства, формируют изображение зон обзора на многоэлементном приемнике излучения, определяют инспектирующий объект по данным многоэлементного приемника. Затем зоны обзора регистрируют повторно при постоянном времени экспозиции. Инспектирующий объект определяют по увеличивающейся яркости и уменьшающейся длине трека в многоэлементном приемнике. Обеспечивается определение объекта, инспектирующего космический аппарат в пассивном режиме, то есть при отсутствии сигналов, излучаемых приближающимся инспектирующим объектом без необходимости размещения на борту дополнительной аппаратуры, увеличивающей массу и габаритные характеристики космического аппарата и требующей дополнительных затрат бортовой энергетики.
Изобретение относится к области защиты командно-измерительной системы космического аппарата от несанкционированного вмешательства, возможного со стороны нелегитимных пользователей. Техническим результатом является повышение защищенности командно-измерительной системы космического аппарата (КА) от несанкционированного вмешательства нелегитимным пользователем. В способе выполняют шифрование команд управления, передаваемых на борт КА, принятые команды дешифруют в командно-измерительной системе КА и преобразуют в сигналы управления. В запоминающем устройстве КА формируют базу данных алгоритмов дешифрования, обозначенных собственным идентификационным признаком. В состав передаваемой команды автоматически включают случайно выбранный признак алгоритма дешифрования. Принятые команды дешифруют по алгоритму с указанным в составе принятой команды идентификационным признаком.
Изобретение относится к области управления системами общего назначения, оптическими системами и может быть использовано для повышения оперативности управления лазерным лучом. Способ управления лазерным лучом включает этапы, на которых в магнитное поле помещают платформу с зеркалом на одной стороне, проводником электрического тока и поворотным механизмом на противоположной стороне, проводник электрического тока выполняют в виде кольцевых витков, расположенных по периметру платформы, поворотный механизм устанавливают в центре тяжести платформы, магнитное поле формируют системой электромагнитов, ток кольцевых витков и электромагнитов регулируют из условия отражения лазерного луча от зеркала в заданном направлении. При этом мишени зеркальной поверхности придают криволинейную форму из условия формирования заданного профиля изображения лазерного луча в плоскости мишени. Изобретение обеспечивает формирование требуемого профиля изображения лазерного луча.
Изобретение относится к области приема и преобразования лазерного излучения и может быть использовано для регистрации лазерного излучения, воздействующего на космический аппарат (КА). Заявлен способ определения направления на источник лазерного излучения, согласно которому лазерное излучение регистрируют светочувствительными элементами и определяют направление на источник излучения по результатам обработки зарегистрированных сигналов. Для определения направления на источник лазерного излучения при снижении весогабаритных характеристик измерительного прибора светочувствительные элементы объединяют в плоскую матрицу, устанавливают светонепроницаемый цилиндр в центре матрицы ортогонально ее поверхности, диаметр цилиндра выбирают порядка поперечного размера светочувствительного элемента, высоту цилиндра выбирают из условия попадания тени цилиндра на поверхность матрицы при изменении угла падения лазерного излучения в заданных пределах. Технический результат – определение направления на источник лазерного излучения при снижении весогабаритных характеристик измерительного прибора.

Группа изобретений относится к изготовлению и эксплуатации конструкции и оборудования космического аппарата (КА), преимущественно ИСЗ. По окончании срока активного существования КА его элементы переводят в газообразное состояние под воздействием факторов космического пространства. С этой целью элементы КА изготовляют из материалов со свойством сублимации под воздействием указанных факторов. При этом создают условия ускоренной сублимации, удаляя защитную пленку с элементов КА и/или нагревая их. Потерю массы элементов обеспечивают в заданном порядке, не допускающем образования обломков и отделяющихся частей. Предлагаемое устройство содержит блок самоуничтожения КА по программе запуска активизации ускоренной сублимации элементов КА. Предусмотрен радиоканал получения команды на самоуничтожение КА с наземного центра управления. Технический результат заключается в повышении эффективности предотвращения техногенного засорения околоземного космического пространства элементами космического мусора. 2 н. и 2 з.п. ф-лы, 13 ил.
Изобретение относится к области обеспечения устойчивости функционирования лазерных средств дальнометрирования в условиях действия оптических помех с фиксированной задержкой по времени и может быть использовано в технике, где используются различные излучатели. В способе защиты лазерных средств дальнометрирования от оптических помех с фиксированной задержкой по времени сканируют пространство последовательностью импульсов лазерного излучения в циклическом режиме, принимают отраженные сигналы и выполняют дальнометрирование. При этом каждому импульсу излучения в составе цикла присваивают индивидуальный признак, по которому идентифицируют отраженные импульсы, и при регистрации двух отраженных импульсов с одинаковым признаком выбирают импульс с большей амплитудой. Технический результат – защита лазерных сред дальнометрирования от оптических помех с фиксированной задержкой по времени.
Изобретение относится к измерительной технике и может найти применение в бортовых системах межзвездной навигации космических аппаратов (КА) для определения автономных оценок орбиты и ориентации КА. Способ межзвездной навигации космического корабля, согласно которому составляют и запоминают бортовой каталог координат звезд, ограничивая выбор звезд звездной величиной, отображаемой используемой на борту системой наблюдения. Строят расчетную траекторию движения космического корабля с привязкой к бортовому каталогу координат звезд. Оптико-электронными приборами системы наблюдения, жестко закрепленными на космическом корабле, проводят навигационные сеансы путем регистрации изображения участков звездного неба, выбирают наиболее яркую звезду на зарегистрированных участках в центральной части поля зрения и соседние с ней звезды, определяют расстояния на изображении от выбранной центральной звезды до соседних звезд. Сравнивают измеренные на изображении расстояния между звездами с расстояниями, полученными из бортового каталога. При совпадении всех этих расстояний отождествляют выбранную центральную звезду на изображении с соответствующей звездой из каталога, определяют ориентацию космического корабля и его положение на траектории полета, учитывая положение центральной звезды и соседних звезд на изображении в приборной системе координат. Запоминают данные расчетов и измерений. При этом при изменении измеренного на изображении расстояния между звездами по сравнению с расстояниями, полученными из бортового каталога, корректируют бортовой каталог. Строят расчетную траекторию движения космического корабля с привязкой к откорректированному каталогу координат звезд. Навигационные параметры определяют по данным откорректированных каталогов и текущего положения космического корабля на траектории. Технический результат – осуществление межзвездной навигации космического корабля.
Изобретение относится к области управления перемещением лазерного луча в пространстве, способам сканирования и слежения, и может быть использовано для навигации космических аппаратов (КА). Заявленное устройство содержит платформу с зеркалом и поворотным механизмом, проводник электрического тока, выполненный в виде кольцевых витков по периметру платформы, систему электромагнитов и механический привод. Управление лазерным лучом осуществляется управляющим током кольцевых витков и электромагнитов и механическим приводом для поворота платформы с зеркалом относительно ее центра тяжести для перемещения лазерного луча в заданную область космического пространства в телесных углах более 2π. Технический результат – расширение пределов регулировки направления лазерного луча при сохранении высокой оперативности перемещения лазерного луча в телесных углах более 2π.
Панель солнечной батареи содержащая каркас, выполненный из упругих элементов и фотопреобразователей, при этом согласно изобретению фотопреобразователи имеют форму трапеций, а каркас выполнен в виде упругих колец различного диаметра, расположенных концентрично и равномерно, каждый фотопреобразователь закреплен своим основанием на двух соседних кольцах каркаса, а размеры фотопреобразователей, форма трапеций и особенности их крепления на каркасе выбраны исходя из возможности трансформации каркаса от плоской поверхности в полусферу. Изобретение обеспечивает возможность снижения заметности космического аппарата за счет изменения площади отражающей поверхности панели солнечных батарей.
Изобретение относится к области управления перемещением лазерного луча в пространстве, способам сканирования и слежения и может быть использовано для навигации космических аппаратов. Устройство содержит платформу с зеркалом и поворотным механизмом и дополнительно для увеличения угла сканирования систему управления лучом, которая состоит из зеркала, закрепленного с помощью шарового шарнирного механизма на цилиндрическом стержне, имеющем винтовую нарезку. Стержень ввинчивается в неподвижно закрепленную на внешней поверхности платформы втулку, имеющую внутреннюю винтовую нарезку, при этом стержень имеет возможность осевого перемещения и связан с валом электродвигателя. Технический результат - повышение точности измерений.
Изобретение относится к области космической техники, а более конкретно к защите космических аппаратов. Способ защиты космического аппарата от несанкционированного доступа сторонних космических объектов включает обнаружение стороннего космического объекта и защиты от него экраном. Экран выполнен в виде капсулы со сжатым газом, помещенной в герметичную оболочку из эластичного полимерного материала с металлическим напылением. Оболочка достаточно хорошо отражает излучение в оптическом диапазоне спектра, по нормали к направлению на приближающийся сторонний объект. Достигается снижение массы экрана.

Изобретение относится к области машиностроения, а более конкретно к устройству защиты космического аппарата. Устройство защиты космического аппарата обслуживания от рассеянных частиц с поверхности облучаемого объекта при облучении ионным пучком содержит гибкую защитную поверхность. Указанная поверхность свернута на стержне из композиционного материала с пружинными разворачиваемыми лентами по краям. Ленты удерживаются стопорным механизмом, который отключается электровыключателем по команде от блока управления в момент начала генерации ионного пучка на объект воздействия. Гибкая защитная поверхность может быть создана слоями пленки в виде пакета, соединенного трубопроводом с баллоном сжатого газа через электровыключатель, управляемый по команде от блока управления. Поверхность может быть снабжена не менее чем одним окном для пропуска ионного пучка. Достигается повышение долговечности работы космического аппарата. 3 з.п. ф-лы, 6 ил.
Изобретение относится к области приема и преобразования излучения и касается способа всенаправленной регистрации изображения в оптическом диапазоне. Способ включает в себя расположение объективов на поверхности сферической оболочки и их ориентацию в радиальном направлении от центра сферы. Поля зрения объективов формируют без взаимного перекрытия в телесном угле 4π стерадиан. Изображение объективов диафрагмируют и проецируют на матричные оптоэлектронные приемники. Матричные приемники взаимно изолируют и располагают на поверхности концентрической сферической оболочки меньшего диаметра. Информацию, получаемую от матричных приемников, преобразуют в панорамное изображение. Технический результат заключается в обеспечении возможности всенаправленной регистрации изображений в оптическом диапазоне.
Изобретение относится к управлению движением космических аппаратов. В способе стабилизации углового движения некооперируемого объекта при бесконтактной транспортировке облучают объект пучком ускоренных ионов, регистрируют изображение объекта на плоском экране, управляют направлением ионного пучка до достижения заданного состояния движения объекта. Перед началом облучения выбирают максимально удаленные друг от друга реперные точки на периметре экранного изображения объекта, направление ионного пучка варьируют так, чтобы на экране регистратора ожидаемое положение максимума потока ускоренных ионов на изображении поверхности облучаемого объекта перемещалось по отрезку, соединяющему выбранные реперные точки. В случае появления новых пар реперных точек на периметре экранного изображения объекта, расстояние между которыми превышает длину контролируемого отрезка, управление ионным пучком выполняют в прежнем режиме с заменой контролируемой пары реперных точек вновь установленными. Техническим результатом изобретения является обеспечение стабилизации углового движения некооперируемого объекта при бесконтактной транспортировке.

Изобретение относится к управлению движением вращающейся связки космических аппаратов (КА). Способ включает переориентацию в пространстве маршевой двигательной установки (МДУ), расположенной в центре вращения связки и связанной тросами с КА. Концы тросов закрепляют на внешней поверхности раздвижных полуколец, охватывающих МДУ и шарнирно связанных с ней. При переориентации раздвигают подвижные части полуколец, выполняют разворот МДУ (напр., с помощью двигателей, установленных в шарнирах) на угол 180 градусов и вновь сдвигают полукольца. Тем самым направление тяги МДУ для последующих манёвров меняется на противоположное. Техническим результатом является повышение оперативности и безопасности управления движением сложной формации группы КА. 1 ил.

Изобретение относится к области обеспечения долговременной устойчивости космической деятельности и может быть использовано для защиты космического аппарата (КА) от столкновения с частицами космического мусора (КМ). Устройство для защиты КА от высокоскоростного ударного воздействия частиц КМ состоит из двухслойного защитного экрана. Двухслойный экран выполнен из алюминиевых пластин с множеством конусообразных элементов на их поверхности. Вершины конусообразных элементов покрыты твердым сплавом. Полости между конусами заполнены углерод-углеродным материалом. Вершины конусов первого и второго слоя сдвинуты друг относительно друга. Техническим результатом изобретения является повышение эффективности защиты, снижение массы конструкции защиты. 1 ил.
Изобретение относится к космической технике и может использоваться для защиты космического аппарата с активно сближающимся объектом. Защита космического аппарата от столкновения с активно сближающимся объектом осуществляется по регистрации непрерывной последовательности сигналов с нарастающей амплитудой в оптическом диапазоне спектра, что позволяет определить пространственную ориентацию активно сближающегося объекта. Защиту осуществляют с помощью экрана – облака мелкодисперсной фракции из полимерных частиц с металлическим напылением, отражающего излучение и маскирующего защищаемый космический аппарат. Техническим результатом является обеспечение защиты и предотвращения столкновения космического аппарата и активно сближающегося с ним объекта.
Изобретение относится к способам укрытия или маскировки и может быть использовано для снижения заметности космического аппарата в видимом диапазоне спектра. Устройство снижения заметности космического аппарата при его наблюдении содержит маскировочное покрытие из материала, наружная поверхность которого имеет многочисленные углубления для рассеивания действующего на него излучения. При этом маскировочное покрытие выполнено в виде воздушно-пузырчатой пленки. Обеспечивается высокий уровень уменьшения обратного радиолокационного отражения при уменьшении веса покрытия.
Изобретение относится к области приема и преобразования лазерного излучения и может быть использовано для засветки оптико-электронных приборов малогабаритных беспилотных летательных аппаратов (МБЛА). Для засветки оптико-электронных приборов излучение, распространяющееся от МБЛА, принимают детекторами плоской формы, расположенными на поверхности сферической оболочки ортогонально радиус-вектору из центра оболочки к точке касания с детектором. Внутри сферической оболочки помещают материал-поглотитель излучения. Определяют направление на МБЛА по радиус-вектору на детектор с максимальной амплитудой регистрируемого сигнала. В автоматизированной системе обработки информации (АСОИ) рассчитывают мощность лазерного излучения. По сигналам АСОИ регулируют мощность лазерного излучения источника. Направление излучения регулируют зеркалом, установленным в магнитном поле на поворотной платформе с проводником электрического тока и поворотным механизмом на противоположной от зеркала стороне. Проводник выполняют в виде кольцевых витков, расположенных по периметру платформы. Поворотный механизм устанавливают в центре тяжести платформы. Магнитное поле формируют системой электромагнитов. Электрические токи электромагнитов и кольцевых витков определяют по результатам вычислений АСОИ из условия ориентации лазерного излучения источника по направлению нормали к поверхности детектора с максимальной амплитудой регистрируемого сигнала. Обеспечивается повышение оперативности засветки оптико-электронных приборов МБЛА.
Изобретение относится к области проведения измерений. Способ определения вертикальности протяженной конструкции заключается в том, что на поверхности конструкции устанавливают источник и приемник лазерного излучения, вертикальность установки конструкции определяют по показаниям приемника лазерного излучения. Источник и приемник лазерного излучения устанавливают в верхней части конструкции на минимальном расстоянии друг от друга и ориентируют вниз. В нижней части конструкции располагают зеркало, плавающее на поверхности жидкости. Вертикальность определяют по отраженному от зеркала лазерному излучению. Технический результат заключается в определении вертикальности протяженной конструкции.
Изобретение относится к информационным средствам, используемым, в частности, в целях навигации, мониторинга и стыковки космических объектов (КО). Способ включает сканирование лазерным лучом заданной области пространства путём отражения луча от зеркала на поворотной платформе, установленной в электромеханическом подвесе. Движение платформы по азимуту и углу места задают системой электромагнитов, питаемых током в виде пилообразной последовательности импульсов. Направление на КО определяют по параметрам импульсов развертки, при которых зарегистрирован сигнал отраженного от КО лазерного излучения. Технический результат направлен на повышение оперативности определения направления на КО.

Изобретение относится к области радиационных измерений и может быть использовано для регистрации плотности потока мононаправленного нейтронного излучения при работе на ядерно-физических установках различного типа и назначения. Способ измерения плотности потока нейтронного излучения низкой интенсивности в статических полях смешанного гамма-нейтронного излучения, согласно которому измерения выполняют детектором, в котором корпус, металлический коллектор, водородосодержащую и не содержащую водород диэлектрические пластины изготовляют из материалов с близкими эффективными атомными номерами. При этом диэлектрические пластины из водородосодержащего материала синхронно с заданным периодом выводят за пределы детектора и возвращают в исходное положение. Технический результат – повышение точности измерения плотности потока нейтронного излучения низкой интенсивности в статических полях смешанного гамма-нейтронного излучения. 2 ил.
Изобретение относится к управлению групповым полетом космических аппаратов (КА) с использованием чувствительных элементов. Согласно способу на КА устанавливают приемно-передающие радиотехнические устройства, лазерные излучатели и приемники оптических сигналов. На ведущем КА размещают позиционно-чувствительный приемник (ПЧП) сигналов в виде набора плоских детекторов, расположенных на поверхности сферы. Ориентируют лазерные излучатели ведомых КА на ПЧП ведущего КА. Оптические сигналы принимаются ПЧП и одновременно отражаются от плоских детекторов ПЧП и принимаются на ведомых КА. По параметрам этих сигналов регулируют, посредством радиокоманд с ведущего КА на ведомые КА, относительное движение и положение КА в составе строя. Технический результат состоит в обеспечении автономного управления группой КА без привлечения спутниковых навигационных систем и наземных комплексов управления.

Изобретение относится к космической технике. Способ формирования группировки космических аппаратов (КА) для локального наблюдения заданной области планеты, оснащенных оптико-электронной аппаратурой дистанционного зондирования, включает выведение КА на кратно-синхронные с периодом вращения планеты орбиты. В составе группировки выводят КА на круговых орбитах с одинаковыми высотами и одинаковыми наклонениями, с восходящими узлами, перемещающимися относительно проекции Солнца на экваториальную плоскость с отличной от нуля угловой скоростью; КА на эллиптических кратно-синхронных с периодом вращения планеты орбиты, апоцентры которых размещают над заданным пунктом поверхности планеты с выведением на орбиту с нулевой скоростью движения в апоцентре - в системе отсчета, жестко связанной с вращающейся планетой. Техническим результатом изобретения является обеспечение непрерывного наблюдения за прогнозируемым событием в заданной области поверхности планеты, возможность гибкого перестроения орбитальной группировки при наблюдении заданной области. 2 з.п. ф-лы, 4 ил.
Изобретение относится к системам автоматической стыковки космических аппаратов (КА). Устройство автоматической стыковки КА в операциях орбитального обслуживания содержит штырь на обслуживающем КА и коническое гнездо на обслуживаемом КА. В центре конического гнезда находится подвижный стержень, на наружном торце которого установлен источник излучения. Приемники излучения расположены на обслуживающем КА симметрично и на одинаковом расстоянии от продольной оси стержня. Контроль взаимного положения КА осуществляется по показаниям расположенных на обслуживающем КА приемников излучения. Техническим результатом изобретения является повышение надежности автоматической стыковки КА при проведении операций орбитального обслуживания.

Изобретение относится к космической технике. В способе предотвращения контакта космического аппарата (КА) с активно сближающимся объектом с использованием приемных датчиков регистрации внешнего излучения на внутренней стороне оболочки, выполненной в виде тела вращения вокруг КА, или ее части, согласованно с приемными датчиками внешнего излучения устанавливают твердотельные лазерные источники. Лазерные источники излучают через отверстие в приемном датчике регистрации внешнего излучения по команде от блока управления. Определяют направление на активно сближающийся объект по результату сравнительной обработки показаний приемных датчиков регистрации внешнего излучения и задают режим предупредительного лазерного излучения, а также выдают команды двигателям ориентации на уклонение от сближения с активным объектом и передающей аппаратуре на сообщение в наземный центр управления о факте воздействия на КА. Техническим результатом изобретения является повышение устойчивости и вероятности выполнения заданной программы КА. 6 ил.

Изобретение относится к управлению движением космических аппаратов (КА), в частности для предотвращения сближения КА с активным объектом (АО). Согласно способу излучаемые приближающимся АО сигналы регистрируют на борту КА детекторами плоской формы, расположенными на поверхности сферической оболочки. Эти сигналы запоминают и обрабатывают, определяя текущее направление на АО по радиус-вектору детектора с максимальной амплитудой сигнала. Регистрируют направления на АО в различные моменты времени и одновременно измеряют мощность принимаемых сигналов. Сравнивают зарегистрированные направления на АО и при их совпадении определяют время до встречи по интервалу между последовательными измерениями и соотношению мощностей сигналов в моменты измерений. Техническим результатом является заблаговременное определение момента встречи АО с КА сравнительно простыми средствами. 1 ил.
Изобретение относится к космической технике. Защиту космического аппарата от столкновения с активно сближающимся объектом осуществляют по регистрации непрерывной последовательности сигналов с нарастающей амплитудой в оптическом диапазоне спектра, что позволяет определить пространственную ориентацию активно сближающегося объекта по максимальным показаниям величины амплитуды регистрируемых сигналов. Устройство для защиты космического аппарата состоит из сферической оболочки с установленными на её поверхности детекторами амплитуды сигнала от активно сближающегося объекта. Внутри оболочки расположен выдвижной защитный экран, выполненный в виде раздвижной рамки, снабженной двигателями малой тяги, расположенными в углах рамки. Наружная поверхность рамки покрыта полимерной металлизированной пленкой. Техническим результатом изобретения является обеспечение предотвращения столкновения космического аппарата с активно сближающимся объектом.
Изобретение относится к управлению движением космических аппаратов (КА) и м.б. использовано при стыковке активного КА с пассивным КА. Способ состоит в том, что наблюдают оптические сигналы, отраженные от плоских зеркальных элементов на поверхности сферической оболочки, установленной на пассивном КА на максимальном удалении от его центра тяжести. Зеркальные элементы изготавливают с одинаковой площадью и располагают равноудаленно друг от друга. Угловыми скоростями управляют до появления непрерывного во времени и постоянного по амплитуде отраженного от зеркальных элементов оптического сигнала. Техническим результатом является снижение весогабаритных характеристик отражающих элементов, устанавливаемых на пассивном КА.
Изобретение относится к наблюдению за полётом космических аппаратов (КА), например, при инспекциях КА или при несанкционированном уводе в зону захоронения с низких околоземных орбит. Способ включает регистрацию и запоминание воздействующих на КА сигналов, измерение их уровня и обработку. При этом сигналы регистрируют сериями за равные промежутки времени, а приближение активного КА определяют по увеличению скорости изменения уровня сигналов в последовательно регистрируемых сериях. Техническим результатом является уменьшение массы и габаритных характеристик КА за счёт возможности использования более простых средств регистрация приближения активного КА.
Изобретение относится к области радиационных исследований. Спектрометр высокоинтенсивного импульсного нейтронного излучения содержит металлический корпус, внутри которого последовательно расположены мишень из материала, содержащего водород, и металлические коллиматор, плоские различной толщины фильтры-поглотители протонов отдачи и коллекторы заряда, сопряженные и равной площади с фильтрами-поглотителями протонов, коллекторы подключены к электроизмерительным приборам, все элементы спектрометра изготовлены из материалов с близким атомным номером, причем толщина мишени из материала, содержащего водород, выбирается менее пробега протонов отдачи с энергией, равной минимальному значению энергии нейтронов в составе анализируемого спектра, коллиматор имеет сотовую структуру с поперечным размером сот менее продольного размера, а соотношение продольного и поперечного размеров сот и толщина фильтров-поглотителей протонов определяются из условий по точности измерения распределения нейтронов по энергии и чувствительности измерительных трактов. Технический результат – повышение точности определения спектрального распределения нейтронов в полях высокоинтенсивного импульсного нейтронного излучения.

 


Наверх