Патенты автора Казаринов Александр Николаевич (RU)

Изобретение относится к средствам коллективного спасения пассажиров и членов экипажа морских судов и плавучих средств. Система сбора и хранения пресной воды для плотов спасательных надувных представляет собой конструкцию из надувных горизонтальных дуг с надувными фартуками, размещенными снаружи тента с нескольких сторон плота и образующими совместно с тентом поверхность сбора дождевой воды; герметичных емкостей для хранения пресной воды, которые размещены с внешней стороны днища плота; системы разъемных резиновых трубок. Резиновые трубки сообщают поверхность сбора дождевой воды с герметичными емкостями для хранения пресной воды. Достигается повышение эффективности сбора дождевой воды, обеспечение целостности, длительности и безопасности хранения ее запасов на спасательном надувном плоту. 10 з.п. ф-лы, 5 ил.

Изобретение относится к испытанию электрических машин постоянного тока. Способ диагностирования технического состояния электродвигателей постоянного тока для наземного и водного транспорта с электродвижением заключается в том, что выполняют измерение и амплитудно-частотно-временной анализ среднеквадратичного отклонения параметров вибрации с применением непрерывного вейвлет-преобразования, что позволяет фиксировать кратковременные импульсы вибрации на всех режимах эксплуатации объекта диагностирования от переходных до установившихся. Технический результат заключается в повышении качества контроля технического состояния электродвигателей постоянного тока. 4 з.п. ф-лы, 6 ил.

Предлагаемое изобретение относится к техническому диагностированию газотурбинных силовых установок. Цель изобретения - повысить точность, достоверность и оперативность диагностирования газотурбинных двигателей (ГТД) на переходных и установившихся режимах от холостого хода до режима номинальной мощности. На практике предлагаемый способ может быть применен для мониторинга технического состояния ГТД морского и речного транспорта, кораблей и судов Военно-морского флота, а также для диагностирования двигателей, используемых в стационарной энергетике. Сущность изобретения заключается в выявлении некоторых характеристик объекта, которые остаются неизменными при нормальном функционировании объекта и изменяющихся при появлении дефектов. Далее эти характеристики используются в качестве прямых или косвенных диагностических признаков. В предлагаемом способе производится сравнительный анализ годографов технически исправных и работоспособных ГТД (эталонный годограф) с годографами контролируемого объекта (контролируемая траектория). Исходными данными для определения вида годографов в пространстве являются термогазодинамические параметры, собранные на режимах холостого хода и прогрева двигателя. Расхождение контролируемой траектории повреждения с эталонным годографом является признаком дефекта. Наличие ломаной линии, участки которой эквидистантны паспортным траекториям, свидетельствует о суммарном накоплении однократных повреждений. Иными словами, по виду исследуемой траектории повреждения можно делать вывод об истории и характере формирования одиночных или кратных дефектов. В качестве области отображения годографов используется трехмерное пространство параметрических инвариантов. 5 з.п. ф-лы, 20 ил.

Предлагаемое изобретение относится к способам вибрационной диагностики механизмов периодического действия, в частности - к способу вибродиагностирования газотурбинных двигателей (ГТД). Сущность изобретения заключается в выявлении некоторых характеристик объекта, которые остаются неизменными при нормальном функционировании объекта и изменяющимися при появления дефектов. Далее эти характеристики (инварианты) используются в качестве прямых или косвенных диагностических признаков. В данном способе реализована возможность применения аппарата кумулянтов спектров высших порядков для получения системы диагностических признаков и инвариантов, пригодных для распознавания ранних стадий развития повреждения подшипниковых опор ГТД, в т.ч. на частотах вращения роторов, соответствующих режимам холодной или технологической прокруток двигателя. Позволяет повысить точность, достоверность и оперативность диагностирования ГТД на ресурсосберегающих режимах функционирования. 9 ил.

Предлагаемое изобретение относится к способам вибрационной диагностики механизмов периодического действия, в частности к способу вибродиагностирования газотурбинных двигателей (ГТД). Цель изобретения - повысить точность, достоверность и оперативность диагностирования ГТД на ресурсосберегающих режимах функционирования. Способ вибродиагностики технического состояния газотурбинных двигателей на ресурсосберегающих режимах с применением теории инвариантов основан на измерении и анализе информационных массивов виброакустических параметров объекта диагностирования, полученных на режимах холодной или технологической прокруток двигателя, установлении и исследовании изменения корреляционных связей между каналами измерений в системе вибродиагностики с применением теории инвариантов и кумулянтов спектров высших порядков, и как результат - определение технического состояния объекта в ходе сравнения результатов исследования с их эталонными значениями. 9 ил.

Предлагаемое изобретение относится к испытательной технике, в частности к способам испытания конструкционных материалов на прочность в широком диапазоне низких температур. На практике предлагаемое изобретение может быть использовано для определения механических характеристик при стендовых испытаниях на разрыв образцов материалов при криогенных температурах. Способ позволяет наблюдать и фиксировать процесс разрушения и развития трещин в материалах образцов, захолаженных с помощью специальных хладагентов (сжиженных газов). Существующие способы стендовых акустико-эмиссионных измерений при криогенных температурах требуют наличия специализированного дорогостоящего оборудования, состоящего в основном из универсальной растягивающей машины и криостата (криокамеры) сложной конструкции. При этом возникают сложности в проведении эксперимента в лабораторных условиях, не оборудованных специальной техникой. Предлагаемый способ определения механических характеристик материалов при криогенных температурах осуществляется с помощью дополнительного оборудования - специального устройства, получившего название «встроенный криотермос», который собирается непосредственно на образце для эксперимента. Особая конструкция встроенного криотермоса и порядок проведения эксперимента позволяют поддерживать постоянное значение температур в месте расположения предполагаемого разрыва образца (концентратора образца), соответствующее температуре хладагента. 1 табл., 4 ил.

Использование: для стендовых акустико-эмиссионных измерений при криогенных температурах. Сущность изобретения заключается в том, что способ стендовых акустико-эмиссионных измерений на образцах материалов при криогенных температурах включает проведение испытаний путем применения специального устройства - криотермоса, который собирается непосредственно на образце для испытаний, установку пьезопреобразователей акустической эмиссии через волноводы за пределами образца и разрыв образца с регистрацией сигналов акустической эмиссии. Технический результат: обеспечение возможности поддержания заданных параметров криогенной температуры образцов для проведения стендовых акустико-эмиссионных измерений при размещении пьезоэлектрических датчиков непосредственно на образце. 3 ил.

 


Наверх