Патенты автора Ковалев Константин Львович (RU)

Изобретение относится к области электротехники, а именно к высокооборотным электрическим машинам с постоянными магнитами на внутреннем роторе. Технический результат – повышение предельно допустимой окружной скорости ротора электрической машины с магнитоэлектрическим возбуждением, улучшение удельных мощностных и массогабаритных характеристик, обеспечение возможности увеличения линейной нагрузки и предельной мощности магнитоэлектрической машины. Ротор магнитоэлектрической машины содержит постоянный магнит (ПМ), выполненный в виде диска равной прочности, немагнитные прижимные диски равной прочности, вал или полувалы, причем ПМ диск обжат с торцов немагнитными прижимными дисками. Немагнитные прижимные диски могут быть выполнены с радиальным оребрением с внешних торцов. При этом изготовление заявленной конструкции ротора магнитоэлектрической машины может быть осуществлено следующими способами: либо немагнитные прижимные диски с ПМ диском стягиваются с помощью винтов, установленных в отверстиях ПМ диска и немагнитных прижимных дисков, либо с помощью прижимных гаек, расположенных на резьбовом соединении вала, либо путем использования радиально упорных подшипников, с помощью которых стягивание немагнитных прижимных дисков с ПМ диском проводится в процессе сборки. 4 н. и 3 з.п. ф-лы, 4 ил.

Изобретение относится к области электротехники, включая импульсную силовую преобразовательную технику, и предназначено для использования в качестве вторичного источника с повышенным коэффициентом мощности для питания нагрузок постоянного тока при наличии первичных автономных или общесетевых источников трехфазного переменного тока. Техническим результатом использования данного изобретения является возможность улучшения коэффициента мощности устройства при одновременном повышении КПД, эксплуатационной надежности, технологичности изготовления. Трехфазный преобразователь переменного тока в постоянный с повышенным коэффициентом мощности содержит входные клеммы подключения к фазам переменного тока, к каждой из которых последовательно подключены датчики напряжения и тока, шесть силовых диодов разбиты на две группы, при этом у диодов первой группы объединены катоды, а у диодов второй группы аноды, первый и второй дроссели, первый и второй силовые транзисторы, первый и второй силовые диоды, последовательно соединенные верхний и нижний конденсаторы, входную нулевую клемму, соединенную с общей точкой конденсаторов, две выходные клеммы, при этом положительная клемма соединена с другим концом верхнего конденсатора, а отрицательная клемма с другим концом нижнего, блок управления. Информационные входы блока управления связаны с датчиками напряжения и тока в фазах, а управляющие выходы с управляющими входами силовых транзисторов. Аноды трех диодов первой группы и катоды трех диодов второй группы соединены с тремя выходами цепочек, состоящих из последовательно включенных датчиков напряжения и тока. Первый дроссель одним концом соединен с объединенными катодами диодов первой группы, а другим концом с анодом первого силового диода, катод которого соединен с положительной выходной клеммой. Второй дроссель одним концом соединен с объединенными анодами диодов второй группы, а другим концом с катодом второго силового диода, анод которого соединен с отрицательной выходной клеммой. Силовые транзисторы включены последовательно, причем их общая точка соединена с входной нулевой клеммой. Положительный электрод первого транзистора соединен с общей точкой первого дросселя и первого диода, а отрицательный электрод второго транзистора с общей точкой второго дросселя и второго диода. 1 ил.

Изобретение относится к электроэнергетике, а именно к системам генерирования постоянного тока с использованием бесконтактных сверхпроводниковых синхронных электрических машин, и может быть использовано при создании систем генерирования постоянного тока с переменной частотой вращения генератора. Технический результат осуществления заявляемого изобретения заключается в повышении удельных мощностных показателей синхронного вентильного генератора с возбуждением от постоянных магнитов на роторе путем снижения массы и габаритов при совместном криостатировании сверхпроводниковой обмотки якоря генератора на статоре и вентилей выпрямительного блока, а также в повышении энергетических показателей генератора. Сверхпроводниковый синхронный вентильный генератор содержит криостат с зоной жидкого криоагента и зоной парообразного криоагента, ротор с постоянными магнитами, высокотемпературную сверхпроводящую (ВТСП) обмотку якоря, расположенную на статоре, выпрямительный блок с силовыми вентилями, охладитель силовых вентилей в виде двух пластин, каждая из которых выполняет две функции: функцию общего провода одного из полюсов выпрямительного блока и функцию выравнивания теплового потока от вентилей в жидкий криоагент. Знак полярности полюсов определяется тем, вентили какой полярности (прямой или обратной) установлены на каждой пластине. Корпус криостата имеет внутреннюю и наружную стенки, между которыми находится слой теплоизоляции. Пластины охладителя установлены на наружной поверхности внутренней стенки криостата и отделены от стенки электроизоляционными керамическими прокладками. Внутренняя стенка криостата содержит отверстие для токовводов, подводящих переменное трехфазное напряжение от обмотки якоря ВТСП генератора к электродам вентилей. 6 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть использовано при проектировании высокооборотных синхронных электрических машин повышенной мощности. Ротор представляет собой ферромагнитный неявнополюсный или явнополюсный массив. На поверхности ферромагнитного массива располагают цилиндрическую шихтованную обойму из градиентного материала, имеющую магнитные и немагнитные зоны. Немагнитные зоны представляют собой фрагменты, расположенные по наружному диаметру и ограничивающие сверху пространство пазов. Шихтованная обойма изготовлена из материала, который имеет возможность изменять свои магнитные свойства, а именно обретать свойства немагнитных материалов в местах воздействия механической обработки. Таким материалом, например, может служить магнитная хромоникелевая сталь марки Х18Н9Т. Технический результат заключается в повышении уровня единичной мощности роторной системы, технологичности конструкции и ее прочности. Технический результат достигается за счет отказа от фрезерования и проточки кольцевых канавок на поверхности ферромагнитного массивного ротора, а также отказа от напрессовки ротора на вал и совместной обработки ротора и вала из единого массива. 2 з.п. ф-лы, 2 ил.

Изобретение относится к гибридным силовым установкам. Гибридная силовая установка для транспортных средств содержит преобразователь первичной энергии в механическую с первичным источником энергии, генератор электрической энергии, электродвигатели, соединительные кабели, альтернативные источники энергии, накопительную систему аккумулирования энергии, блок распределения энергии, контроллеры и преобразовательные устройства. Дополнительно имеются блоки криоохлаждения соединительных кабелей силовой установки, блоки криоохлаждения вентилей преобразовательных устройств, блоки криоохлаждения электрогенератора и электродвигателей. Соединительные кабели силовой установки, а также обмотки якоря и возбуждения электрогенератора и электродвигателей выполнены из сверхпроводникового материала. Повышается эффективность установки. 3 з.п. ф-лы, 3 ил.

Изобретение относится к электроэнергетике, а именно, к бесконтактным синхронным электрическим машинам с комбинированным возбуждением. Технический результат –повышение массоэнергетических и эксплуатационных показателей электрической машины. Двухпакетная индукторная электрическая машина с комбинированным возбуждением содержит два пакета, в каждом из которых статоры содержат шихтованные сердечники, с размещенными на них трехфазными обмотками якоря, ферромагнитный вал, на котором установлены два ферромагнитных стальных сердечника ротора с выступами, радиально намагниченные постоянные магниты с одинаковой полярностью, расположенные между ферромагнитными роторными выступами, неподвижную кольцевую обмотку возбуждения осевого магнитного потока, установленную на внутренней стороне ферромагнитного подшипникового щита. Трехфазные обмотки якоря двух пакетов электрически независимы, выполнены сосредоточенными в виде кольцевых или рейстрековых катушек. Статоры выполнены со сдвигом, равным 30 электрических градусов. Ферромагнитные стальные сердечники ротора повернуты относительно друг друга на 90 электрических градусов. Обмотки якоря и обмотка возбуждения выполнены из сверхпроводникового материала. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к бесконтактным сверхпроводниковым синхронным электрическим машинам с комбинированным возбуждением. Технический результат – повышение удельной мощности, надежности. Сверхпроводниковая индукторная электрическая машина с комбинированным возбуждением содержит статор с шихтованным сердечником, неподвижные кольцевые обмотки возбуждения, многофазную многополюсную обмотку якоря, ферромагнитный вал, на котором установлен ферромагнитный стальной сердечник ротора с роторными выступами (зубцами). Однонаправленные радиально намагниченные постоянные магниты расположены между ферромагнитными роторными выступами. Магнитные шунты (интерцепторы) установлены с обеих торцевых сторон ферромагнитного сердечника ротора. На ферромагнитных роторных выступах выполнены немагнитные пазы. 13 з.п. ф-лы, 5 ил.

Изобретение относится к электроэнергетике, а именно к индукторным электрическим машинам с комбинированным возбуждением на основе высокотемпературных сверхпроводников (ВТСП). Индукторная электрическая машина содержит дисковый статор с обмоткой якоря, выполненной из катушек в форме трапеций, равномерно распределенных по окружности на поверхности диска статора, дисковый ротор с трапецеидальными отверстиями, в которых установлены трапецеидальные стопки пластин из ВТСП лент второго поколения, расположенную на статоре обмотку возбуждения, выполненную из двух кольцевых осесимметричных катушек, разделенных дистанционными прокладками. На цилиндрической боковой и плоских торцевых поверхностях диска ротора установлен бандаж. Вал машины выполнен из немагнитного материала. Технический результат - повышение удельных массогабаритных и энергетических показателей, а также эксплуатационной надежности, обеспечение компактности и технологичности выполнения электрической машины. 4 з.п. ф-лы, 3 ил.

Изобретение относится к электроэнергетике. Технический результат - повышение удельной мощности, КПД, надежности, обеспечение компактности. Сверхпроводниковая синхронная электрическая машина с обмотками якоря и возбуждения в неподвижном криостате содержит магнитопроводящие щиты 1 и 2, магнитопроводящий корпус 3, статор 4, выполненный шихтованным, на зубцах которого размещена многофазная многополюсная обмотка якоря 5, выполненная из высокотемпературной сверхпроводниковой ленты 2-го поколения (ВТСП-2) в виде рейстрековых катушек. Машина содержит также установленный на валу когтеобразный ротор, представляющий собой когтеобразные полюсные системы 6 и 7 с радиально 8 и тангенциально 9 намагниченными постоянными магнитами. В межполюсном зазоре между краем полюса одной полярности и полюсной системой другой полярности размещены торцевые постоянные магниты 10. На статоре установлены кольцевые сверхпроводниковые обмотки возбуждения (СПОВ) 11 и 12, выполненные из ВТСП-2 ленты. Сверхпроводниковые обмотки возбуждения и обмотка якоря размещены в общем неподвижном криостате 13 на статоре. 3 з.п. ф-лы, 2 ил.

Изобретение относится к электроэнергетике и предназначено для использования в разработках аэрокосмической техники. Технический результат – повышение массоэнергетических характеристик электрической машины. Электрическая машина с постоянными магнитами и ВТСП обмотками содержит корпус, в котором размещен статор, содержащий рейстрековые ВТСП катушки, намотанные ВТСП-2 лентами и расположенные на зубцах из стеклотекстолита. Между катушками статора установлены диамагнитные вставки из массивного высокотемпературного сверхпроводникового материала. Катушки, расположенные на зубцах, установлены на внешнем защитном экране, запрессованном в корпус. Установленный на немагнитном валу машины цилиндрический ротор представляет собой немагнитный пакет, в пазах которого размещены чередующиеся постоянные магниты с радиальной и тангенциальной намагниченностью. В середине магнитных полюсов ротора установлены пластины из массивного высокотемпературного сверхпроводникового материала. На поверхности ротора расположена тонкостенная оболочка из пленочного ВТСП материала. 2 ил.

Изобретение относится к испытаниям электрических машин, а именно к способам и устройствам измерения тока ротора мощных синхронных генераторов с бесщеточным возбуждением, в том числе сверхпроводниковых. Способ и устройство измерения тока ротора генератора с бесщеточным возбуждением обеспечивают непосредственное измерение тока ротора генератора в узле бесконтактного измерения тока, отличаются тем, что осуществляют формирование магнитного поля, величина которого пропорциональна току ротора, с помощью индуктора, установленного на роторе с возможностью вращения вместе с ротором, и преобразуют магнитное поле в электрический сигнал с помощью датчика магнитного поля, расположенного на корпусе генератора с возможностью определения величины магнитного поля индуктора. Технический результат применения предложенных способа и устройства измерения тока ротора генератора с бесщеточным возбуждением заключается в повышении точности, надежности и живучести всей системы измерений, а также в возможности использования ее в качестве оборудования, предназначенного для диагностики технического состояния генераторов с бесщеточным возбуждением. 2 н.п. ф-лы, 2 ил.

Изобретение относится к классу устройств, предназначенных для ввода и удаления хладагента в высокотемпературных сверхпроводящих (ВТСП) устройствах. Система криообеспечения, содержащая расходный криостат, предназначена для поддержания заданного уровня температуры криогенной жидкости в высокотемпературных сверхпроводящих (ВТСП) устройствах. Отличается тем, что система содержит дополнительную дренажную магистраль с установленным вентилем, подогревателем паров азота и вакуумным насосом, систему подачи газообразного гелия в криостат и его барботирования через криогенную жидкость в емкости. Изобретение предназначено для увеличения эффективности и надежности поддержания заданного уровня температуры криогенной жидкости в ВТСП обмотках электрических машин. 3 з.п. ф-лы, 1 ил.

Изобретение относится к электротехнике, а именно к электрическим машинам с волновой передачей. Электрическая машина с мультипликатором содержит корпус 10, статор 3, ротор 4 и волновую передачу в режиме мультипликатора с телами качения 7, причем мультипликатор размещен коаксиально внутри ротора электрической машины. Мультипликатор содержит жесткое колесо 5 с наружным зубчатым профилем, являющееся осью электрической машины, сепаратор 6 с телами качения, прикрепленный к корпусу электрической машины, волнообразователь 8, выполненный многодисковым, с выходным валом в форме цилиндра, наружная поверхность которого является основанием для обмотки ротора электрической машины, а внутренняя - выполнена из круговых проточек одного диаметра, число которых равно числу дисков. Центры соседних круговых проточек смещены относительно продольной оси на одинаковые эксцентриситеты, направленные в разные стороны, при этом каждая из этих проточек имеет канавку, в которой размещены ролики, образующие наборные подшипники, внутренними обоймами которых являются диски, контактирующие с телами качения, расположенными в сепараторе. Технический результат состоит в снижении габаритов и массы электрической машины большой мощности с мультипликатором, повышении КПД и снижении стоимости ее изготовления. 2 ил.

Изобретение относится к машиностроению, а более конкретно к устройствам, преобразующим механическую энергию низкооборотного привода в электрическую энергию. Мультипликатор высокомощной энергетической установки содержит сепаратор (1) с телами качения (2), неподвижное жесткое колесо (3) и волнообразователь 4. Сепаратор, жесткое колесо и волнообразователь выполнены из набора секций, каждая из которых сочленяется с соседними по поверхностям одинаковых диаметров. В волнообразователе (4) выполнены окна в форме сегментов. На торцевых поверхностях секций сепаратора выполнены радиальные пазы (10, 11) двух размеров, больший (10) соответствует наружному диаметру тел качения волновой передачи, а меньший (11) - диаметру торцевых шариков (12). На краях осей (18) расположены подшипники качения (19). Достигается повышение КПД мультипликатора. 3 ил.

 


Наверх