Патенты автора Джунгурова Гиляна Евгеньевна (RU)

Изобретение относится к области получения гидроксида алюминия. Технический гидроксид алюминия гиббситной модификации подвергают сушке при температуре 23-110°С в течение 5-36 ч, охлаждают при необходимости до комнатной температуры и отсеивают фракцию с размером частиц менее 180 мкм. Добавляют в нее при перемешивании водной раствор 48-52% мас. или 20-40 % мас. азотной кислоты, взятой в 90-100% мольном количестве от стехиометрии, не прекращая перемешивания нагревают до температуры 100-110°С и выдерживают при перемешивании и этой температуре в течение 3-4 ч. Отфильтровывают непрореагировавший гидроксид алюминия, полученный раствор нитрата алюминия охлаждают. Обеспечивается повышение чистоты растворов нитрата алюминия за счет снижения содержания оксидов железа и натрия. 3 н.п. ф-лы, 5 табл., 10 пр.

Катализатор для получения легких олефинов С2-С4 по методу Фишера-Тропша содержит кобальт и железо на мезопористом носителе, представляющем собой мезопористый оксид алюминия со средним диаметром пор 6-12 нм, общим объемом пор 0,85-1,10 см3/г, долей мезопор не менее 90% и удельной площадью поверхности 250-315 м2. Массовое отношение кобальт : железо в прокаленном катализаторе находится в пределах 1,0-9,0. Готовят катализатор постадийной пропиткой носителя водными растворами прекурсоров активных соединений кобальта и железа - нитратов кобальта и железа. Каждую стадию пропитки проводят после предварительного вакуумирования носителя или прекурсора катализатора до остаточного вакуума 1,0-2,5 кПа и при перемешивании носителя или прекурсора катализатора при температуре 60-80°С в течение 0,5-4 ч в избыточном по сравнению с объемом пор носителя объеме раствора прекурсоров активных соединений. Раствор фильтруют под вакуумом с остаточным давлением 1,0-2,5 кПа, сушат прекурсор катализатора при температуре 40-90°С в течение 3-8 ч и прокаливают его при температуре 300-450°С в течение 3-12 ч после каждой стадии нанесения активного соединения. Мезопористый носитель получают, растворяя изопропоксид алюминия в изопропиловом спирте с добавлением гидроксида аммония. Полученную смесь перемешивают в течение 5-8 ч при температуре 80-90°С до образования геля при мольном отношении компонентов в растворе Al(i-OC3H7)3:i-C3H7OH:NH4OH=1:1,0-4,0:1,5-2,5. Затем его сушат при температуре 95-110°С в течение 1-4 ч и прокаливают при температуре 400-500°С в течение 1-4 ч. Технический результат от реализации данного изобретения заключается в достижении производительности разработанного катализатора по легким олефинам С2-С4, полученным из синтез-газа по методу Фишера-Тропша, более 80 кг/м3кат⋅ч. 2 н.п. ф-лы, 1 табл., 9 пр.

Изобретение относится к катализатору для получения синтетических углеводородов с высоким содержанием изоалканов, представляющему собой смесь цеолита и базового катализатора синтеза Фишера-Тропша, носителем которого служит оксид алюминия. При этом цеолит имеет мезопористую мелкокристаллическую структуру с порами типа MFI или ВЕА с объемом мезопор не менее 0,2 см3/г, долей мезопор от общего объема пор цеолита не менее 50%, удельной поверхностью не менее 350 м2/г и размер кристаллитов не более 0,2 мкм. Также при этом базовый катализатор синтеза Фишера-Тропша содержит 46-50 мас. % кобальта, а его носитель имеет мезопористую структуру с общим объемом пор не менее 0,8 см3/г, долей мезопор не менее 80% и удельной площадью поверхности не менее 250 м2/г, а содержание цеолита в катализаторе составляет 31-50 мас. %. Изобретение также относится к способу получения вышеописанного катализатора, способу получения базового катализатора синтеза Фишера-Тропша и способу получения мезопористого мелкокристаллического цеолита. Технический результат заключается в достижении производительности предлагаемого катализатора более 1000 кг/м3кат⋅ч по синтетическим жидким углеводородам, содержащим более 30 мас. % изоалканов и имеющим температуру застывания не выше минус 21°С, что обеспечит их совместимость при транспортировке и хранении совместно с минеральной нефтью. 4 н.п. ф-лы, 1 табл., 10 пр.

Изобретение относится к катализатору гидрирования олефинов в процессе получения синтетической нефти. Заявляется катализатор, содержащий 41-60 мас.% никеля от массы прокаленного катализатора и носитель, представляющий собой мезопористый оксид алюминия со средним размером частиц 3-7 нм, общим объемом пор не менее 0,85 см3/г, долей мезопор не менее 90% и удельной площадью поверхности не менее 280 м2/г. Изобретение также относится к способам (вариантам) получения описанного выше катализатора. Технический результат заключается в повышении степени гидрирования олефинов, содержащихся в составе синтетических углеводородов процесса Фишера-Тропша, более 96%. 3 н.п. ф-лы, 1 табл., 12 пр.

Настоящее изобретение относится к способу получения синтетической нефти из продуктов синтеза Фишера-Тропша, включающий гидрирование смеси синтетических углеводородов в реакторе с неподвижным слоем никельсодержащего катализатора в токе газа гидрирования, включающего моноксид углерода и водород. При этом неподвижный слой катализатора заполняют смесью синтетических углеводородов и нагревают до температуры гидрирования перед подачей газа гидрирования, а после подачи газа гидрирования каждые 18-24 часа объемную скорость газа гидрирования снижают на 30-70% в течение 1-3 ч с последующим восстановлением до исходного значения, соотношение водорода к моноксиду углерода поддерживают в пределах 1,8…2,6, гидрирование ведут при температуре 210-260°С, давлении 10-50 атм, объемной скорости газа гидрирования 10-1000 ч-1, объемном расходе смеси синтетических углеводородов 1-10 ч-1, а соотношение объемного расхода смеси синтетических углеводородов и объемной скорости газа гидрирования удовлетворяет условию:, где Р(СУ) - объемный расход синтетических углеводородов, ч-1; ν - объемная скорость газа гидрирования, ч-1; k - доля олефинов в смеси синтетических углеводородов, поступающих на гидрирование. Предлагаемый способ позволяет достигнуть степени гидрирования олефинов, содержащихся в синтетических углеводородах, не менее 99 %, при остаточном содержании олефинов после гидрирования не более 0,33 мас.%. 1 табл., 8 пр.

Изобретение относится к газохимии и касается получения синтез-газа из природного/попутного газа в процессе автотермического риформинга, в частности к катализатору и способу получения катализатора автотермического риформинга. Катализатор имеет удельную площадь поверхности в прокаленном состоянии 20-50 м2/г и удельную площадь поверхности металлического никеля после восстановления катализатора 8-11 м2/г, средний размер частиц металлического никеля 3-8 нм и дисперсность частиц 10-16%. Катализатор содержит 5-15 мас. % никеля от массы прокаленного катализатора. Носитель имеет удельную площадь поверхности 40-120 м2/г и объем пор носителя 0,2-0,4 см3/г. Носитель выбирают из смеси: оксид циркония и оксид церия или оксид магния, оксид церия и оксид циркония. Катализатор дополнительно содержит промотор, выбранный из группы: палладий, рутений, в количестве от 0,01 до 0,5 мас. %. Катализатор получают путем совместного осаждения гидроксидом аммония из раствора, содержащего предшественники никеля, церия, циркония и дистиллированную воду, или раствора, содержащего предшественники никеля, церия, циркония, магния и дистиллированную воду, имеющего рН 8,0-9,0. Процесс ведут при перемешивании и температуре 40-45°С в течение 1-2 ч с последующим фильтрованием, высушиванием при температуре 100-110°С в течение 6-8 ч и прокаливанием при температуре 400-650°С в течение 4-6 ч. Изобретение обеспечивает высокую среднюю конверсию природного/попутного газа не менее 90% в реакции автотермического риформинга природного или попутного газа и высокую производительность по синтез-газу не менее 7000 м3/м3кат⋅ч. 2 н. и 1 з.п. ф-лы, 1 табл., 16 пр.

Изобретение может быть использовано в производстве гетерогенных катализаторов, обладающих высокоразвитой поверхностью, и электродов в литий-ионных батареях. Электрохимический способ получения наноразмерных структур оксида титана (IV) включает анодное окисление титанового электрода в ионной жидкости с добавлением воды или пропиленгликоля в атмосфере воздуха. Ионная жидкость имеет общую формулу К+А-, где К+ - алкилимидазолий, А- - NTf2 -, или PF6 -, или Cl-. Анодное окисление проводят при температуре 20-25°C в течение 5-30 минут при постоянном токе 1-10 мА или при постоянном потенциале 1-10 B. Изобретение позволяет получать наночастицы оксида титана в виде наносфер, нановолокон или наностержней в зависимости от условий проведения синтеза. 8 ил., 7 пр.

Изобретение относится к области электрохимического получения активных форм наночастиц оксидов металлов. Электрохимический способ получения наноразмерных структур оксида никеля (II) включает окисление анода в ионной жидкости в атмосфере воздуха. Причем используют никелевые анод и катод. Окисление проводят при температуре 20-25°C в течение 2-20 минут, при плотности постоянного тока 5-10 мА/см2 или при постоянном потенциале 2.3-5 В. Предпочтительно используют ионную жидкость с добавкой дистиллированной воды или пропиленгликоля. Изобретение обеспечивает получение высокоупорядоченных наноразмерных структур. 3 з.п. ф-лы, 5 ил., 5 пр.

 


Наверх