Патенты автора Широкин Максим Юрьевич (RU)

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа и повышение быстродействия релейной защиты, которая его реализует. В способе релейной защиты все режимы сети разделяют на две группы. На первую группу защита призвана реагировать, а на вторую - нет. Проводят обучение релейной защиты для гарантирования ее селективности. Обучают не реагировать на режимы второй группы. Роль учителя отводят имитационной модели электрической сети, в составе которой находится энергообъект. Наблюдаемые электрические величины преобразуют в двумерный сигнал и отображают его на собственной плоскости. Согласно способу, в отличие от известных технических решений подобного типа, где каждый режим реального объекта или же его имитационной модели отображается точкой на плоскости двумерного сигнала, каждый режим отображается годографом - геометрическим местом отображений изменяющегося двумерного сигнала за время наблюдения. На предварительном этапе обучения защиты определяют область отображений годографов режимов, воспроизводимых имитационной моделью. Это режимы второй группы. Их отображения создают блокирующую область. По своему функциональному назначению она запрещает действие релейной защиты. После обучения, когда защита работает на реальном объекте, ее поведение подчиняют ряду условий, вытекающих из взаимоположения годографа наблюдаемого режима и имеющейся блокирующей области. 2 з.п. ф-лы, 15 ил.

Использование: в области электротехники. Технический результат – повышение точности разграничения режимов повреждения трансформатора и альтернативных им режимов. Согласно способу релейной защиты трансформатора осуществляют наблюдение токов и напряжений на зажимах его обмоток, преобразование наблюдаемых величин в двумерные сигналы, обучение релейной защиты от первой имитационной модели трансформатора, воспроизводящей режимы короткого замыкания в его обмотках, от второй имитационной модели, воспроизводящей режимы насыщения магнитопровода трансформатора, и от третьей имитационной модели, воспроизводящей режимы внешней сети, раздельного отображения множеств режимов первой, второй и третьей имитационных моделей в виде соответственно первой, второй и третьей областей на плоскостях двумерных сигналов. Производят срабатывание прошедшей обучение защиты наблюдаемого трансформатора, если по меньшей мере один замер отображается в соответствующей первой области, но при этом не каждый двумерный сигнал отображается в соответствующей второй или третьей области, и при формировании двумерных сигналов используют напряжения намагничивания обмоток, которые в свою очередь формируют в передающих моделях обмоток, где преобразуют ток и напряжение на зажимах каждой обмотки в соответствующее напряжение намагничивания. 1 з.п. ф-лы, 24 ил.

Изобретение относится к области электроэнергетики и направлено на построение универсальной защиты трансформатора, использующей имеющуюся информацию в максимально полном объекте. Поставленная задача решается путем использования моделей обмоток трансформатора, а также моделей его магнитопровода. Задействуется информация о наблюдаемых токах и напряжениях всех обмоток, а также априорная информация о параметрах обмоток и магнитопровода. Аварийное состояние трансформатора распознается по критерию адекватности моделей реальному объекту. Способ защиты включает наблюдение отсчетов токов и напряжений, их интерполяционное преобразование в непрерывные входные величины, используемые в моделях, формирование двумерных выходных сигналов, на плоскостях отображения которых задают области срабатывания релейной защиты. Новыми являются операции преобразования входных величин вплоть до формирования выходных сигналов. Первые обмотки - те, модели которых должны быть задействованы в начале преобразований. Входные токи и напряжения этих моделей преобразуются в производную потоков стержней, на которых располагаются первые обмотки. Модели других обмоток используются иначе. Для них входными величинами становятся производные магнитных потоков и собственные токи, а выходными - напряжения на зажимах. Формируют разностные напряжения, указывающие несоответствие между напряжениями, полученными в результате наблюдения объекта и путем его моделирования. Аналогично используют модели независимых контуров магнитопровода, в которых определяются падения магнитных напряжений. Один путь их определения - через потоки стержней. О неадекватности модели и объекта судят как по электрическим, так и магнитным разностным напряжениям. Двумерные электрические и магнитные сигналы образуются из разностных и базовых напряжений. Характеристики срабатывания защиты задают на плоскостях отображения двумерных сигналов. 10 ил.

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа. Согласно способу выделяют две подсистемы, соприкасающиеся в месте замыкания. Для первой подсистемы составляют преобразовательную модель, а для второй - имитационную. Входы преобразовательной модели соответствуют входам первой подсистемы, а выход - месту предполагаемого замыкания. Входы имитационной модели подразделены на основные, соответствующие входам второй подсистемы, и дополнительный, соответствующий месту предполагаемого замыкания. Роль преобразовательной модели заключается в формировании напряжений места предполагаемого замыкания из непрерывных напряжений и токов, полученных для входов первой подмодели. Имитационную модель активируют, воздействуя на ее основные входы непрерывными напряжениями входов второй подмодели. На дополнительный вход воздействуют выходными сигналами преобразовательной модели. Реакцию имитационной модели определяют только на основных входах. Это токи, созданные воздействиями на все входы модели. На заключительном этапе определяют разности между непрерывными токами на основных входах, полученными из наблюдаемых токов, и реакцией модели. Уровень разностных токов несет информацию о том, правильно ли сделано предположение о месте повреждения. Нулевой уровень свидетельствует о совпадении реального места с предполагаемым. 1 табл., 7 ил.

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа путем обеспечения защиты любых энергообъектов с моделями любого типа и с произвольным объемом наблюдения объекта. Согласно способу входы объекта соответствуют входам модели. Чтобы активировать модель, на ее входы необходимо подать одну из наблюдаемых на соответствующем входе объекта величин. Наблюдению подлежат все входы и выходы, но необязательно полностью. Полному наблюдению подлежит как минимум один вход. Таким образом, наблюдение осуществляется «с избытком». Все входы и выходы разделяются на три группы. В первую группу включаются полностью наблюдаемые входы и выходы. Во вторую - наблюдаемые только по напряжению, в третью - только по току. Модель объекта активируется путем воздействия на первые и вторые входы и выходы модели источниками наблюдаемых напряжений, на третьи - источниками наблюдаемых токов. Определяют реакцию активированной модели на приложенные воздействия, причем в качестве реакции выделяют только токи первых входов и выходов модели. Определяют разностные сигналы как разности между токами, наблюдаемыми на первых входах и выходах объекта и соответствующими реакциями модели. Характеристики срабатывания защиты задают на основе замеров, формируемых с участием разностных сигналов. 9 ил.

Использование: в области электроэнергетики. Технический результат - повышение быстродействия релейной защиты. Данный способ обнаруживает аварийные режимы объекта, отличающиеся друг от друга по времени распознавания. Делается это с привлечением имитационных моделей контролируемого объекта. Моделируются два типа взаимно противостоящих режимов: первый - короткие замыкания в защищаемой зоне; второй - все прочие режимы, когда срабатывание защиты запрещается. Имитационные модели подают на релейную защиту токи и напряжения в режимах обоих типов и тем самым проводят обучение релейной защиты. Электрические величины представляют в дискретной форме. Отсчеты величин режима короткого замыкания преобразуют в промежуточные текущие величины. Преобразование совершается в нарастающем окне наблюдения на каждом шаге увеличения окна. Из промежуточных величин формируют текущий замер. Обучение выполняют на каждом шаге, получая столько характеристик срабатывания, сколько шагов, начиная со второго, предусмотрено для обучения защиты. Для дистанционной защиты линий электропередачи промежуточными величинами являются комплексные сигналы, изменяющиеся с каждым шагом наблюдения. В рамках предлагаемого способа дана реализация фильтра ортогональных составляющих, формирующего текущие комплексные сигналы. Частным случаем этого фильтра, работающего на произвольном окне наблюдения, является широко применяемый фильтр Фурье, для которого окно наблюдения кратно полупериоду частоты сети. 1 з.п. ф-лы, 3 ил.

 


Наверх