Патенты автора Мирошниченко Георгий Петрович (RU)

Группа изобретений относится к области защиты от рентгеновской и гамма-радиации. Способ защиты от воздействия рентгеновского и гамма электромагнитного проникающего излучения с помощью экранирующей среды, установленной на пути распространения излучения к объекту защиты, содержит этапы, на которых с помощью экранирующей среды осуществляют волноводное отклонение рентгеновского и гамма электромагнитного проникающего излучения от объекта защиты, заключающееся в многократном полном внешнем отражении указанного излучения. Технический результат – обеспечение защиты объекта с помощью устройства с пониженными массогабаритными характеристиками. 3 н.п. ф-лы, 2 ил.

Изобретение относится к технике оптической связи и может использоваться в системах фотонной квантовой связи. Технический результат заключается в увеличении максимальной дальности передачи квантовой информации. Для этого в состав передающего устройства введен оптический изолятор, включенный между источником монохроматического излучения и оптическим фазовым модулятором, а в состав приемного устройства введен циркулятор и блок регистрации центральной компоненты в спектре фазомодулированного состояния. 1 ил.

Изобретение относится к технике оптической связи, а именно к системам фотонной квантовой связи. Техническая задача заявляемого устройства заключается в увеличении стойкости к попыткам измерения с однозначным различением фазомодулированных состояний с целью установить корреляции с распределяемыми битовыми последовательностями. Технический результат заявляемого устройства заключается в увеличении максимальной дальности передачи квантовой информации. Технический результат достигается за счет того, что радиоэлектронные блоки управления и синхронизации обеспечивают расширение дискретного набора фаз модулирующих сигналов с четырех до 2N значений (0, 180°/N, 2·180°/N, …, (2N-1)180°/N) модулирующих сигналов при произвольном целом значении N > 2 вследствие модификации управляющих блоков. 1 ил.

Изобретение относится к области бесконтактного измерения высоких температур потока газов, в частности к способам измерения температуры потока газов в камере сгорания и обработки спектральных данных оптических средств контроля, и может быть использовано для экспериментальных исследований рабочего процесса в зоне горения камер сгорания и повышения надежности при эксплуатации современных авиационных и вертолетных двигателей и энергетических турбин. Предложен способ определения температуры потока газов в камере сгорания газотурбинного двигателя с углеводородным топливом, который включает регистрацию в диапазоне длин волн от 400 до 800 нм спектра теплового излучения потока газов, образующегося при горении углеводородного топлива, а о температуре потока газов судят на основании температуры частиц сажи, присутствующих в потоке газов, которую рассчитывают при помощи аппроксимации закона излучения Планка в координатах Вина. Для расчета температуры частиц сажи из зарегистрированного спектра выделяют область теплового излучения потока газов в диапазоне длин волн от 600 до 800 нм, по вычисленной температуре частиц сажи по формуле Планка рассчитывают спектр теплового излучения частиц сажи. Вычитают рассчитанный спектр теплового излучения частиц сажи из первоначального спектра теплового излучения потока газов, рассчитывают спектр хемилюминесценции радикалов , вычитают спектр хемилюминесценции радикалов из спектра теплового излучения потока газов, полученного после вычитания спектра теплового излучения частиц сажи, рассчитанного по формуле Планка. Рассчитывают интегральные интенсивности серий электронно-колебательных переходов и на их основании определяют два отношения интегральных интенсивностей серий электронно-колебательных переходов. По полученным отношениям, и, используя полученные расчетным путем с помощью выражений зависимости G(1,0) и G(-1,0) отношений интегральных интенсивностей полос излучения радикалов от колебательной температуры радикалов получают два значения колебательной температуры радикалов . Сравнивают полученные значения колебательной температуры и получают ошибку вычисления колебательной температуры . Определяют два новых значения колебательной температуры радикалов вычисляют величину, на которую необходимо скорректировать температуру частиц сажи при помощи рассчитываемой функции оптимизации, и, используя скорректированное значение температуры частиц сажи, повторяют вышеперечисленные действия до тех пор, пока разница значений колебательных температур радикалов не станет меньше заданного значения погрешности, а значение температуры частиц сажи Т, при котором выполняется это условие, принимается за достоверное значение искомой температуры потока газов. Технический результат - повышение достоверности и расширение области применения способа определения температуры потока газов в камере сгорания газотурбинного двигателя с углеводородным топливом на основе спектра теплового излучения потока газов, за счет расчета и компенсации спектральных составляющих, соответствующих тепловому излучению частиц сажи и радикалов в составе суммарного теплового излучения потока газов, измерения колебательной температуры радикалов по полосам излучения в видимом диапазоне и определения температуры потока газов на основе температуры частиц сажи, скорректированной на основании колебательных температур радикалов . 1 з.п. ф-лы, 4 ил.

Изобретение относится к области волоконной оптики и может быть использовано для регистрации фазовых сигналов волоконно-оптических интерферометрических датчиков. Способ измерения фазового сигнала волоконно-оптического интерферометрического датчика включает измерение интерференционного сигнала I(t), формирование двух сигналов вспомогательной фазовой модуляции cos(ω0t) и cos(2ω0t), где ω0 - их циклическая частота, и с их помощью преобразование синхронным детектированием измеренного интерференционного сигнала в два сигнала S1(t)=-BJ1(C)sin(ϕ(t)) и S2(t)=-BJ2(C)cos(ϕ(t)), где В - коэффициент, пропорциональный амплитуде интерференционного сигнала на фотоприемном устройстве, S1(t) и S2(t) - первая и вторая гармоники интерференционного сигнала, J1(C) и J2(C) - функции Бесселя первого рода первого и второго порядков, ϕ(t) - измеряемый фазовый сигнал, формируют два дополнительных сигнала вспомогательной фазовой модуляции cos(3ω0t) и cos(4ω0t) и с их помощью синхронным детектированием преобразуют измеренный интерференционный сигнал I(t) в два сигнала S3(t)=BJ3(C)sin(ϕ(t)) и S4(t)=BJ4(C)cos(ϕ(t)), где S3(t) и S4(t) - третья и четвертая гармоники интерференционного сигнала, J3(С) и J4(C) - функции Бесселя первого рода третьего и четвертого порядков, и рассчитывают значение выходного измеряемого фазового сигнала в соответствии с формулой Технический результат – повышение точности измерений фазовых сигналов путем устранения влияния измерения глубины вспомогательной фазовой модуляции на интерференционный сигнал в диапазоне ее значений от 0,9 до 5 радиан. 3 ил.

Способ контроля параметров сигнала волоконно-оптического интерферометра фазового датчика с перестраиваемым источником оптического излучения включает в себя измерение амплитуды контролируемого интерферометрического сигнала, по которому судят о текущем значении глубины фазовой модуляции, ее регулировку до оптимального значения путем изменения амплитуды модулирующего сигнала, изменение центральной длины волны излучения источника оптического излучения и измерение соответствующих текущих значений амплитуды контролируемого интерферометрического сигнала. Дополнительно при регулировке производят учёт ошибки сигнала. Технический результат заключается в обеспечении оптимальной величины глубины фазовой модуляции и максимальной величины размаха интерференционного сигнала. 3 ил.

 


Наверх