Патенты автора Тропин Евгений Сергеевич (RU)

Изобретение относится к области электротехники, а именно к элементам батарей среднетемпературных электрохимических устройств для получения электроэнергии, и может быть использовано для создания твердооксидных топливных элементов (ТОТЭ). Ячейка содержит несущий электролит в виде трубчатой основы из допированного скандата лантана La1-хSrхScO3-δ со спекающей добавкой оксида кобальта или оксида никеля до 1 масс. %, на который последовательно нанесены тонкие функциональные электродные слои, содержащие материал на основе скандата лантана, при этом катод выполнен из композитного материала общей формулы LaNi1-zFezO3/La1-хSrхSc1-yMeyO3-δ, а анод – из композитного материала общей формулы Ni/La1-хSrхSc1-yMeyO3-δ, где х = 0.05÷0.15 ат. %, y = 0.01÷0.15 ат. %, z = 0.1÷0.5 ат. %, Me – Fe, Co или Ni. Технический результат заключается в упрощении технологии изготовления трубчатой единичной топливной ячейки с несущим протонным электролитом, при использовании которой возможно получение электроэнергии прямым преобразованием углеводородного топлива. 7 ил., 1 табл.

Изобретение относится к области электротехники, а именно к элементам батарей среднетемпературных электрохимических устройств для получения электроэнергии, и может быть использовано для создания твердооксидных топливных элементов (ТОТЭ). Согласно изобретению, ячейка содержит несущую трубчатую основу, представляющую собой коллекторный слой из композитного материала анода общей формулы Ni/La1-хSrхScO3-δ, на который последовательно нанесены тонкие функциональные слои композитного материала анода общей формулы Ni/La1-хSrхSc1-yMeyO3-δ, электролита на основе скандата лантана, допированного стронцием, функционального слоя композитного материала катода общей формулы LaNi1-zFezO3/La1-хSrхSc1-yMeyO3-δ, а также коллекторный слой катода общей формулы LaNi1-zFezO3, где х = 0.05÷0.2 ат.%, y = 0.01÷0.15 ат.%, z = 0.1÷0.5 ат.%, Me – Fe, Co или Ni. При использовании трубчатой единичной топливной ячейки возможно получение электроэнергии при прямом преобразовании углеводородного топлива в смеси с водяным паром и/или углекислым газом. Техническим результатом является упрощение технологии изготовления трубчатой единичной топливной ячейки и повышение эффективности её работы в атмосферах различного состава. 1 табл., 5 ил.

Изобретение относится к электролитической ячейке для генерации чистого водорода из природного углеводородного топлива, содержащей протонпроводящий керамический электролит и слои электродов из того же материала с добавкой никеля. Ячейка характеризуется тем, что электролит и электроды выполнены на основе скандата лантана, допированного стронцием. Технический результат, достигаемый изобретением, заключается в упрощении прямой конверсии углеводородного топлива в чистый водород при работе ячейки в восстановительных и углеродсодержащих атмосферах, например, таких как метан и водород, и повышении химической стойкости ячейки в указанных атмосферах. 4 ил.

Изобретение относится к области электротехники, а именно к способам модификации материалов для кислородных электродов для повышения их электрохимической активности и может быть использовано при разработке материалов электродов для средне- и высокотемпературных твердооксидных топливных элементов и других электрохимических устройств. Способ модификации электродных материалов включает пропитку пористой электродной матрицы модифицирующей добавкой. Скорость лимитирующей стадии электродной добавки выше скорости лимитирующей стадии электродной матрицы при условии изоструктурности материалов добавки и электродного материала. Изобретение позволяет исключить рутинный выбор модифицирующей добавки, а также деградацию электродов во времени. 10 ил., 1 табл.

Изобретение относится к электрохимии твердых кислород - ионных электролитов. Способ согласно изобретению заключается в том, что исследуемый образец при комнатной температуре и давлении помещают в кварцевый реактор, через который осуществляют циркуляцию газа по газовому контуру, сообщающемуся с реактором с образованием общего газового пространства, газовый контур с реактором откачивают на высокий вакуум, открывают сообщение между масс-спектрометром и газовым контуром, посредством масс-спектрометра стабилизируют ионный ток массовых чисел 18, 28 или 32, задают температуру и давление, при которых необходимо провести измерения, исследуемый образец приводят в равновесие с газовой фазой, перекрывают сообщение реактора с газовым контуром, из газового контура откачивают кислород природного изотопного состава и напускают обогащенный изотопом кислород 18О, посредством масс-спектрометра записывают зависимости ионного тока для массовых чисел 32, 34, 36 от времени, устанавливают постоянный поток между газовым контуром и масс-спектрометром, после этого открывают реактор и начинают процесс исследований с помощью изотопного обмена. При этом в качестве исследуемого образца в кварцевый реактор помещают электрохимическую ячейку, разделяющую общее газовое пространство на две части, и после установления равновесия электрохимической ячейки с газовой фазой, перекрывают сообщение реактора с одной из частей разделенного газового пространства, а из оставшейся его части откачивают кислород природного изотопного состава и напускают туда обогащенный изотопом кислород 18О, причем в момент открытия сообщения реактора с одной из частей разделенного газового пространства, на электроды электрохимической ячейки подают напряжение. Изобретение направлено на исследование кинетики межфазного обмена в системе «газ – электрохимическая ячейка» с использованием метода изотопного обмена в условиях поляризации электродов. 1 з.п. ф-лы, 5 ил.

Изобретение направлено на создание возможности определения скорости межфазного обмена кислорода и скоростей трех типов обмена кислорода с оксидными материалами. Образец исследуемого материала помещают в проточный реактор, пропускают смесь инертного газа с кислородом заданного парциального давления кислорода и после установления равновесия между образцом и газовой фазой при выбранных значениях парциального давления кислорода и температуры. Далее в проточный реактор последовательно подают два и/или более импульсов изотопно-обогащенной смеси разного объема, после прохождения двух и/или более импульсов изотопно-обогащенной смеси разного объема получают две и/или более пары значений изотопного состава импульса изотопно-обогащенной смеси до и после прохождения над образцом при различных временах экспозиции. Затем полученные значения используют для расчета скорости межфазного обмена кислорода и скоростей трех типов обмена кислорода по теории о трех типах обмена кислорода. Техническим результатом является обеспечение возможности получения информации о содержании изотопа в импульсе до и после прохождения импульса, на основании которой становится возможным с большей точностью рассчитать скорость межфазного обмена кислорода и создается принципиальная возможность рассчитать скорости трех типов обмена кислорода. 3 ил.

 


Наверх